首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant correlations were found between the numbers of apple rust mites Aculus schlechtendali feeding on fruitlets shortly after the blossom period and the amounts of russet on the calyx-end and cheek of apples at harvest. Stalk-end russet was not usually affected. Fruits from clusters or trees on which rust mite numbers had been reduced with an acaricide pre-blossom had less calyx-end and cheek russet than apples from untreated comparisons. Histological studies showed that feeding by mites on flower receptacles/fruitlets in May and June damaged epidermal cells, resulting in russet formation.  相似文献   

2.
3.
After infestation ofSolanum dulcamara leaves by the eriophyoid gall miteAceria cladophthirus (Nalepa), induced resistance became operative against subsequent eriophyoid attacks. The protective effect, manifested by reduction in plant damage and/or mite proliferation, lasted up to 40 days. When the challenger wasA. cladophthirus, the number and size of lesions decreased significantly but mite mortality was not enhanced. When the rust miteThamnacus solani was used as challenger, both russeting symptoms and mite survival rate were strongly reduced. AsA. cladophthirus-induced resistance is relatively permanent, it opens new prospects for eriophyoid control in the field.  相似文献   

4.
The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June–October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.  相似文献   

5.
Tomato plants have their leaves, petioles and stems covered with glandular trichomes that protect the plant against two-spotted spider mites and many other herbivorous arthropods, but also hinder searching by phytoseiid mites and other natural enemies of these herbivores. This trichome cover creates competitor-free and enemy-free space for the tomato russet mite (TRM) Aculops lycopersici (Acari: Eriophyidae), being so minute that it can seek refuge and feed inbetween the glandular trichomes on tomato cultivars currently used in practice. Indeed, several species of predatory mites tested for biological control of TRM have been reported to feed and reproduce when offered TRM as prey in laboratory experiments, yet in practice these predator species appeared to be unable to prevent TRM outbreaks. Using the phytoseiid mite, Amblydromalus limonicus, we found exactly the same, but also obtained evidence for successful establishment of a population of this predatory mite on whole plants that had been previously infested with TRM. This successful establishment may be explained by our observation that the defensive barrier of glandular plant trichomes is literally dropped some time after TRM infestation of the tomato plants: the glandular trichome heads first rapidly develop a brownish discoloration after which they dry out and fall over onto the plant surface. Wherever TRM triggered this response, predatory mites were able to successfully establish a population. Nevertheless, biological control was still unsuccessful because trichome deterioration in TRM-infested areas takes a couple of days to take effect and because it is not a systemic response in the plant, thereby enabling TRM to seek temporary refuge from predation in pest-free trichome-dense areas which continue to be formed while the plant grows. We formulate a hypothesis unifying these observations into one framework with an explicit set of assumptions and predictions to be tested in future experiments.  相似文献   

6.

Background

Plants have inducible defenses to combat attacking organisms. Hence, some herbivores have adapted to suppress these defenses. Suppression of plant defenses has been shown to benefit herbivores by boosting their growth and reproductive performance.

Results

We observed in field-grown tomatoes that spider mites (Tetranychus urticae) establish larger colonies on plants already infested with the tomato russet mite (Aculops lycopersici). Using laboratory assays, we observed that spider mites have a much higher reproductive performance on russet mite-infested plants, similar to their performance on the jasmonic acid (JA)-biosynthesis mutant def-1. Hence, we tested if russet mites suppress JA-responses thereby facilitating spider mites. We found that russet mites manipulate defenses: they induce those mediated by salicylic acid (SA) but suppress those mediated by JA which would otherwise hinder growth. This suppression of JA-defenses occurs downstream of JA-accumulation and is independent from its natural antagonist SA. In contrast, spider mites induced both JA- and SA-responses while plants infested with the two mite species together display strongly reduced JA-responses, yet a doubled SA-response. The spider mite-induced JA-response in the presence of russet mites was restored on transgenic tomatoes unable to accumulate SA (nahG), but russet mites alone still did not induce JA-responses on nahG plants. Thus, indirect facilitation of spider mites by russet mites depends on the antagonistic action of SA on JA while suppression of JA-defenses by russet mites does not. Furthermore, russet mite-induced SA-responses inhibited secondary infection by Pseudomonas syringae (Pst) while not affecting the mite itself. Finally, while facilitating spider mites, russet mites experience reduced population growth.

Conclusions

Our results show that the benefits of suppressing plant defenses may diminish within communities with natural competitors. We show that suppression of defenses via the JA-SA antagonism can be a consequence, rather than the cause, of a primary suppression event and that its overall effect is determined by the presence of competing herbivores and the distinct palette of defenses these induce. Thus, whether or not host-defense manipulation improves an herbivore’s fitness depends on interactions with other herbivores via induced-host defenses, implicating bidirectional causation of community structure of herbivores sharing a plant.
  相似文献   

7.
Worldwide a great variety of eriophyoid mites inhabit forest canopy trees and ornamental plants that are used in city parks, squares and boulevards. An analysis of the relevant bibliography portrays only a fragmentary knowledge and the majority of our information concerns the temperate zone. Three case studies are presented as examples of different approaches to solve problems connected with eriophyoid mites of forest and ornamental trees. The first example deals with eriophyoids of a temperate zone forest in a natural environment, focusing on conifers which represent the largest component. The second case study documents a possible approach to obtain greater knowledge and control of the bud mite species, Trisetacus juniperinus (Nalepa) on Cupressaceae. This is a harmless species in the natural environment which becomes a serious pest in nurseries and young stands of Cupressus sempervirens in the Mediterranean region. The final case study reports on long-term studies carried out in Poland on injurious eriophyoid species that are found in nurseries, city greenery and parks. This paper also discusses future perspectives for research on eriophyoid mites living on forest and ornamental plants.  相似文献   

8.
Eriophyoids have high potential as adventive mite species (AMS) because their small size make them difficult to detect, and can be easily distributed in world trade. Economic, social and environmental impact from adventive eriophyoid mites has been significant. Considerable attention has been given to adventive insect species while adventive mites have received little attention and little information is available for eriophyoids. This paper summarizes information on adventive eriophyoid mites, their impact, and the history of some important invasions. The status of adventive species of eriophyoids introduced as biological control agents of weeds is presented. A list of eriophyoid mites reported as invasive species worldwide is given. Pathways of concern and biosecurity actions to reduce the risk of eriophyoid mites are discussed. The need to raise public awareness of the risk and importance of these tiny organisms as AMS is emphasized. Scientific and technical challenges to deal with adventive eriophyoids are discussed.  相似文献   

9.
In Italian nurseries and young groves of evergreen cypress(Cupressus sempervirens L.), the eriophyoid miteTrisetacus juniperinus (Nal.) is considered a very serious pest. A rating system of damage symptoms was developed to investigate the susceptibility of different cypress seedling families to the mite. Based on this system, the seedlings were evaluated for three years in the nursery and in two field locations after transplanting. Data obtained in the nursery allowed the cypress families to be allocated to at least two different levels of susceptibility. These levels of susceptibility were generally also maintained in the field. However, the environmental conditions of the two transplanting localities significantly affected the susceptibility of each family. In all families, scores for each of the damage categories were strongly correlated positively to each other and negatively with the average increment in the height of plant over the duration of the field experiment. Assessment of the intensity of the symptoms peculiar to damage category A (buds enlarged, deformed, russet and/or branch apex folded) was sufficient to give the same susceptibility evaluation as if data for all damage categories were used. The evaluation of susceptibility on the basis of injury pattern may return very useful information for selection and certification of families of known susceptibility to eriophyoid mites. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and two-spotted spider mites, Tetranychus urticae Koch in combination with the predator species Amblyseius swirskii Athias-Henriot. When spider mites infested plants prior to predator release, predatory mites were not capable of controlling spider mite populations in the absence of other pest species. A laboratory experiment showed that predators were hindered by the webbing of spider mites. In a greenhouse experiment, spider mite leaf damage was lower in the presence of thrips and predators than in the presence of whiteflies and predators, but damage was lowest in the presence of thrips, whiteflies and predators. Whitefly control was also improved in the presence of thrips. The lower levels of spider mite leaf damage probably resulted from (1) a strong numerical response of the predator (up to 50 times higher densities) when a second and third pest species were present in addition to spider mites, and (2) from A. swirskii attacking mobile spider mite stages outside or near the edges of the spider mite webbing. Interactions of spider mites with thrips and whiteflies might also result in suppression of spider mites. However, when predators were released prior to spider mite infestations in the absence of other pest species, but with pollen as food for the predators, we found increased suppression of spider mites with increased numbers of predators released, confirming the role of predators in spider mite control. Thus, our study provides evidence that diversity of pest species can enhance biological control through increased predator densities.  相似文献   

11.
12.
《Journal of Asia》2005,8(1):87-91
Overwintering mite diversity and their habitats were studied in apple and pear orchards during 2002-2003 winter season. Twospotted spider mite was mostly found under the tree barks and fabric strips. European red mites were from crevices of twigs. Tydeid, tarsonemid and oribatid mites were mostly from soil and ground vegetation. Even in the protected overwintering habitat such as artificial fabric strip, twospotted spider mite suffered 81-91% mortality during winter. Predaceous phytoseiid mites found were Amblyseius womersleyi, A. makuwa, A. orientalis, A. rademacheri A. obtuserellus, and A. eharai. Amblyseius womersleyi was the most dominant species in both apple and pear orchards, followed by A. obtuserrellus in apple orchards and A. makuwa in pear orchards. Most phytoseiid mites were found on ground vegetation while their potential prey items were remained on the tree. Implication of the findings for conservation of beneficial mites and biological control of spider mite during season was further discussed.  相似文献   

13.
14.
Predators of apple and pear pests in northern and central Europe and their use as biological control agents are reviewed. Many natural enemy species are specialized feeders and are able to respond to the population dynamics of particular pest species. The most oustandingly successful example of this is the use of phytoseiid mites, particularly Typhlodromus pyri , against phytophagous pest mites in apple. This mite management strategy is now widespread throughout European apple growing regions. Another example is the use of Anthocoris nemoralis against pear psyllids, Cacopsylla pyricola and C. pyri . Several groups of naturally occurring polyphagous predators, such as chrysopids, coccinellids, syrphids and spiders, also prey on a number of pest species in orchards, contributing generally to the reduction in pest populations. However, they are unlikely alone to prevent pest damage fully and reliably. In seeking biological control opportunities for a particular pest, these polyphagous natural enemies are unlikely to be a high priority. An exception, due to its abundance in orchards, is the common earwig, Forficula auricularia , although this predator may also cause some fruit injury. Another option to consider when reviewing possibilities for biological control in orchards is the introduction of biological control agents. The success rate of this approach, using arthropod predators to control pests of field crops, has been generally poor. Furthermore, mass production methods for predators are likely to be difficult and very costly. The biological supplies industry is constantly seeking culture techniques, largely for arthropod biological control agents of pests of protected crops. It is possible that some future advance may be relevant to orchards, though currently available predators do not appear promising. A careful economic appraisal of the feasibility of use of any potential biological control agent would be prudent before embarking on research.  相似文献   

15.
The grape rust mite, Calepitrimerus vitis, was identified from grapevines firstly in Korea. In the spring of 2011, symptoms characterized by the retarded growth of young shoots and flower buds in the grapevine were reported by local farmers in Hwaseong, Gyeonggi province of Korea. A large number of the small, white, and longitudinal mites were observed both on the twig surfaces and the overwintering buds. The mite was identified as Calepitrimerus vitis (Nalepa) (Acari: Eriophyidae) by morphological observations under both a microscope and scanning electron microscope (SEM). Nationwide surveys in 2011–2012 were conducted to figure out the distribution of the mite, revealing that the mite was widely distributed in the grape production area in Korea both in greenhouse and in open field vineyards. Interestingly, the mite density was much higher in Hwaseong, a middle-west coast of Korea, with several hundred mites per overwintering bud. However, no significant damage was observed from the sprouting season to the harvest time, except for the retarded growth of shoot and flower buds in the early season. The morphological characteristics of C. vitis with SEM micrographs and the survey results in major grape production areas in Korea are reported herein.  相似文献   

16.
Abstract 1 In the Mediterranean region, the eriophyoid mite Trisetacus juniperinus causes considerable damage to the evergreen cypress, Cupressus sempervirens L., particularly in nurseries and young stands, disturbing the apical growth of the tree. 2 The impact of mites on survival and apical growth of two commercial clones of cypress (Agrimed and Bolgheri), as well as the results of differently timed pesticide applications to suppress mite population on newly grafted trees, were evaluated. 3 Mites easily infested clonal scions from rootstocks that were previously infested in the nursery, inducing tip deformation and disturbance of the growth. Apical growth was significantly lower in infested than in control trees 2 years following the graft. 4 Deformed apical buds were left early by mites, which dispersed in the crown and may have incurred high mortality. This is interpreted as a defensive reaction of the cypress to the mite attack, which involves costs resulting in reduced apical growth in both clones. However, mites partly overcame tree defences in the Bolgheri clone. 5 Healthy rootstock and graft material should be used to limit damage and maintain plant growth because natural infestations rarely occur. In case of attack, a pesticide should be applied as soon as possible because precocious mite infestation has a log‐lasting effect on tree growth, with considerable economic damage.  相似文献   

17.
This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite–plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.  相似文献   

18.
The aim of this study was to assess the genetic basis of rust mite (Aculus schlechtendali) resistance in apple (Malus × domestica). A. schlechtendali infestation of apple trees has increased as a consequence of reduced side effects of modern fungicides on rust mites. An analysis of quantitative trait loci (QTLs) was carried out using linkage map data available for F1 progeny plants of the cultivars ‘Fiesta’ × ‘Discovery’. Apple trees representing 160 different genotypes were surveyed for rust mite infestation, each at three different sites in two consecutive years. The distribution of rust mites on the individual apple genotypes was aggregated and significantly affected by apple genotype and site. We identified two QTLs for A. schlechtendali resistance on linkage group 7 of ‘Fiesta’. The AFLP marker E35M42-0146 (20.2 cM) and the RAPD marker AE10-400 (45.8 cM) were closest positioned to the QTLs and explained between 11.0% and 16.6% of the phenotypic variability. Additionally, putative QTLs on the ‘Discovery’ chromosomes 4, 5 and 8 were detected. The SSR marker Hi03a10 identified to be associated to one of the QTLs (AFLP marker E35M42-0146) was traced back in the ‘Fiesta’ pedigree to the apple cultivar ‘Wagener’. This marker may facilitate the breeding of resistant apple cultivars by marker assisted selection. Furthermore, the genetic background of rust mite resistance in existing cultivars can be evaluated by testing them for the identified SSR marker. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Phytoseiid mites of the genus Phytoseius are natural enemies of tetranychid and eriophyid herbivorous mites mostly found on hairy plants where they feed on prey, as well as on pollen. Nevertheless, the nutritional ecology and the role of these predators in biological pest control are only rarely addressed. In the present study, we evaluated the potential of Phytoseius finitimus to feed and reproduce on three major greenhouse pests, the two-spotted spider mite, the greenhouse whitefly and the western flower thrips. Additionally, we estimated the effect of cattail pollen when provided to the predator alone or in mixed diets with prey. Contrary to thrips larvae, both spider mite larvae and whitefly crawlers sustained the development of P. finitimus. In addition, females consumed more spider mite eggs and larvae, as well as whitefly crawlers than thrips larvae, but laid eggs when feeding on all prey. When provided alone, cattail pollen sustained the development and reproduction of the predator. The addition of pollen in mixed diets with prey reduced prey consumption, though it increased the predator’s egg production. We discuss the implications of our findings for biological pest control.  相似文献   

20.
Mites and ticks are susceptible to pathogenic fungi, and there are opportunities to exploit these micro-organisms for biological control. We have collated records of 58 species of fungi infecting at least 73 species of Acari, either naturally or in experiments. Fungal pathogens have been reported to kill representatives of all three orders of the Actinotrichida (the Astigmata, Oribatida and Prostigmata) and the Ixodida and Mesostigmata in the Anactinotrichida. Most reports concern infections in the Prostigmata, particularly in the families Tetranychidae and Eriophyidae. Two species of Acari-specific pathogens - Hirsutella thompsonii and Neozygites floridana - are important natural regulators of pestiferous eriophyoid and tetranychid mites respectively. Research has been done to understand the factors leading to epizootics of these fungi and to conserve and enhance natural pest control. Hirsutella thompsonii was also developed as the commercial product Mycar for the control of eriophyoid mites on citrus, but was withdrawn from sale in the 1980s, despite some promising effects in the field. Beauveria bassiana , Metarhizium anisopliae, Paecilomyces farinosus, Paecilomyces fumosoroseus and Verticillium lecanii infect ixodid ticks in nature, and B. bassiana and M. anisopliae are being studied as biological control agents of cattle ticks in Africa and South America. Beauveria bassiana also has potential as a mycopesticide of the two-spotted spider mite, Tetranychus urticae . There is scope to develop fungal biocontrol agents against a range of acarine pests, both as stand-alone treatments and for use in integrated pest management. Further research is required to clarify the taxonomic status of fungal pathogens of Acari, to study their ecosystem function, and to develop efficient mass production systems for species of Hirsutella and Neozygites .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号