首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neospora caninum is a cyst-forming parasite that has been recognised worldwide as a cause of cattle abortion and neuromuscular disease in dogs. Variations in genetic profiles, behaviour in vitro, and pathogenicity have been established among N. caninum isolates. However, it is unclear which parasite factors are implicated in this intra-specific diversity. Comparative analysis of protein expression patterns may define the determinants of biological diversity in N. caninum. Using DIGE and MALDI-TOF MS techniques, we quantified and identified differentially expressed proteins in the tachyzoite stage across three N. caninum isolates: the virulent Nc-Liv and Nc-Spain 7 isolates, and the attenuated Nc-Spain 1H isolate. Comparison between Nc-Spain 7 and Nc-Spain 1H extracts revealed 39 protein spots that were more abundant in Nc-Spain 7 and 21 in Nc-Spain 1H. Twenty-four spots were also increased in Nc-Spain 7 and 12 in Nc-Liv. Three protein spots were more abundant in the Nc-Liv extracts than in the Nc-Spain 1H extracts. MS analysis identified 11 proteins differentially expressed that are potentially involved in gliding motility and the lytic cycle of the parasite, and oxidative stress. These differences could help to explain variations in behaviour between isolates and provide a better knowledge of mechanisms associated with virulence.  相似文献   

2.
The obligate intracellular parasite Neospora caninum disseminates across the placenta and the blood-brain barrier, to reach sites where it causes severe pathology or establishes chronic persistent infections. The mechanisms used by N. caninum to breach restrictive biological barriers remain elusive. To examine the cellular basis of these processes, migration of different N. caninum isolates (Nc-1, Nc-Liverpool, Nc-SweB1 and the Spanish isolates: Nc-Spain 3H, Nc-Spain 4H, Nc-Spain 6, Nc-Spain 7 and Nc-Spain 9) was studied in an in vitro model based on a placental trophoblast-derived BeWo cell line. Here, we describe that infection of dendritic cells (DC) by N. caninum tachyzoites potentiated translocation of parasites across polarized cellular monolayers. In addition, powered by the parasite's own gliding motility, extracellular N. caninum tachyzoites were able to transmigrate across cellular monolayers. Altogether, the presented data provides evidence of two putative complementary pathways utilized by N. caninum, in an isolate-specific fashion, for passage of restrictive cellular barriers. Interestingly, adoptive transfer of tachyzoite-infected DC in mice resulted in increased parasitic loads in various organs, e.g. the central nervous system, compared to infections with free parasites. Inoculation of pregnant mice with infected DC resulted in an accentuated vertical transmission to the offspring with increased parasitic loads and neonatal mortality. These findings reveal that N. caninum exploits the natural cell trafficking pathways in the host to cross cellular barriers and disseminate to deep tissues. The findings are indicative of conserved dissemination strategies among coccidian apicomplexan parasites.  相似文献   

3.
The worldwide economic impact of Neospora caninum infection has caused the development of effective vaccines to become one of the main goals in the field of neosporosis research. In this study, the protection conferred by antigens from inactivated whole tachyzoites (TZ) and a tachyzoite-bradyzoite mixture (TZ-BZ) of N. caninum (Nc-Spain7 isolate) incorporated into a water-in-oil emulsion (W/O) and aluminium hydroxide-ginseng extract (Al/G) was evaluated in mouse models of congenital and cerebral N. caninum infection. Immunization with TZ-BZ induced congenital and cerebral neosporosis exacerbation that was mainly characterized by reduced neonatal median survival time and increased parasite presence in adult mouse brains. The immune response of mice immunized with TZ-BZ was characterized by an increase in IFN-γ expression prior to challenge and an increase in IL-4 expression accompanied with significantly higher levels of antibodies against 2 recombinant bradyzoite-specific proteins (rNcSAG4 and rNcBSR4) after challenge. Immunization with TZ in W/O significantly reduced neonatal mortality, vertical transmission as well as parasite presence in adult mouse brains and induced a strong humoral immune response. The current study demonstrates the critical role of stage-specific antigens and adjuvants on the development of effective inactivated vaccines for the prevention of N. caninum infection.  相似文献   

4.
Neospora caninum is a world-wide parasite that causes neuromuscular disorders in dogs and bovine abortion. Biological diversity among isolates has been proved in both in vivo and in vitro studies. In contrast, little is known about the genetic diversity of this parasite. Microsatellite sequence analysis constitutes a suitable tool that has been used for the genetic analysis of other apicomplexan parasites. In this report, we describe the identification and analysis of 13 microsatellite loci from N. caninum DNA sequences deposited in public databases, which were evaluated with the use of 9 isolates grown in vitro. One microsatellite was monomorphic, and the remaining 12 loci exhibited 3 to 9 separate alleles. Multilocus analysis showed that each of the 9 isolates investigated here displayed a unique profile and revealed no association between the genetic similarity and host or geographic origin. The multilocus analysis approach described here might nevertheless provide the powerful tool needed to study the genetic complexity of N. caninum and the molecular epidemiology of neosporosis.  相似文献   

5.
Neospora caninum and Hammondia heydorni are morphologically and phylogenetically related coccidians that are found in dogs. Although there is serological evidence of N. caninum infection in the white-tailed deer (Odocoileus virginianus), the parasite has not been yet isolated from the tissues of this host. In an attempt to isolate N. caninum from deer, hearts from 4 deer with antibodies to N. caninum were fed to 2 dogs. One of these dogs shed unsporulated oocysts 12-14 microm in diameter. Sporulated oocysts were not infective to Mongolian gerbils (Meriones ungulatus), and DNA isolated from these oocysts was not amplified using N. caninum-specific primers. However, positive amplification with the H. heydorni-specific first internal transcribed spacer (ITS-1) primers and common toxoplasmatiid ITS-1 primers confirmed the presence of H. heydorni DNA in the samples. The oocysts were considered to be H. heydorni on the basis of their morphology, biology, and molecular characteristics. This is the first record of a H. heydorni-like parasite in the white-tailed deer.  相似文献   

6.
Neospora caninum has been identified as a major cause of abortion in cattle in a number of countries throughout the world. Until the recent demonstration that dogs can serve as a definitive host of this parasite, it was not possible to study the infection in cattle orally exposed to oocysts. The aim of this study was to investigate the potential of N. caninum oocysts to infect calves, and to define initial immune responses that arise after oral infection. Seven calves were fed approximately 10(4)-10(5) N. caninum oocysts, three calves served as uninfected controls. Before infection, all calves were serologically negative for anti-Neospora antibodies and the calves were non-reactive to Neospora antigen in an in vitro lymphocyte proliferation assay. Peripheral blood lymphocytes from inoculated calves were able to mount in vitro proliferative responses to crude N. caninum antigen extract as early as 1 week p.i. Within 2 and 4 weeks p.i., Neospora-specific IgG1 and IgG2 antibodies were detected by IFAT and ELISA in serum from infected calves but not from sham-infected calves. The continued presence of reactive cells in the blood, spleen and mesenteric, inguinal, bronchial lymph nodes was seen as late as 2.5 months p.i., and parasite DNA was detected in the brain and spinal cord of the infected animals by PCR, indicating that the cattle were infected by oral inoculation of N. caninum oocysts collected from dogs, and that the animals were systematically sensitised by parasite antigen.  相似文献   

7.
Attempts were made to isolate and identify Korean bovine Babesia parasite. Blood samples were collected from Holstein cows in Korea, and Babesia parasites were propagated in SCID mice with circulating bovine red blood cells for isolation. The isolate was then antigenically and genotypically compared with several Japanese isolates. The Korean parasite was found to be nearly identical to the Oshima strain isolated from Japanese cattle, which was recently designated as Babesia ovata oshimensis n. var. Haemaphysalis longicornis was the most probable tick species that transmitted the parasite.  相似文献   

8.
Neospora caninum and Hammondia heydorni are morphologically and phylogenetically related coccidians that are found in dogs. New diagnostic genetic loci, based on random-amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), were developed to aid in the detection of H. heydorni-like parasites and to discriminate them from N. caninum and other related coccidians of dogs. On the basis of the data obtained from 5 random decamers, H. heydorni (Manhattan-1) and N. caninum (NC1) were characterized by distinct banding patterns (similarity index = 0.068). High-stringency PCR assays were developed from the sequences of 2 cloned bands (GenBank BZ592549 and BZ592593), uniquely amplified from H. heydorni. Interestingly, using these primers, PCR amplification was achieved only from 2 of the 5 isolates presumed to represent H. heydorni. The same result was obtained from these 5 isolates using a recently described PCR assay directed to the H. heydorni internal transcribed spacer-1. It is concluded that H. heydorni and N. caninum are genetically distinct and that such tools may be useful for more detailed characterization of the diversity of related parasites occurring in dogs.  相似文献   

9.
Neospora caninum, a recently recognized protozoan parasite of animals, is considered to be a major cause of bovine abortion worldwide. Although its life cycle is not completely known, recent studies suggest that the sexual stage occurs in dogs. The prevalence of sexual reproduction in N. caninum, however, is unknown. We investigated the ability of 3 N. caninum isolates (NC-1, NC-SweB1, and NC-Liverpool) to propagate asexually for approximately 250 parasite generations in a cell line in which they had not been cultured previously. The malthusian parameter of fitness was estimated for each isolate from 10 independent replicates of tachyzoites at the beginning as well as at the end of the experimental period. Derived and ancestral values for mean fitness were compared both within and among NC-1, NC-SweB1, and NC-Liverpool isolates. Results showed a significant increase in mean fitness for the 3 N. caninum isolates at the end of the experimental period. These findings indicate that N. caninum can adapt to new environmental conditions without the help of sexual recombination, supporting the idea that this parasite has, at least potentially, the capacity for maintaining clonal propagation in nature.  相似文献   

10.
First isolation of Neospora caninum from an aborted bovine fetus in Spain   总被引:1,自引:0,他引:1  
Neospora caninum was isolated from the brain of a 6-mo-old aborted bovine fetus from Galicia, Spain. The fetal brain homogenate was inoculated intraperitoneally into cortisonized mice. The peritoneal exudate from the infected mice, along with mouse sarcoma cells (Tg180), was inoculated into a second group of mice, and parasites were harvested from the peritoneal exudate. The parasites were adapted to in vitro growth in Vero monolayers. The tachyzoites from the peritoneal exudate reacted positively with anti-N. caninum antibodies and not with anti-Toxoplasma gondii antibodies on indirect fluorescent antibody test. The tachyzoites were lethal to interferon gamma gene knock out (KO) mice and could be identified immunohistochemically in the tissues. The identity of the parasite was also confirmed by polymerase chain reaction amplification of N. caninum-specific fragments. The sequences of the amplified gene 5 fragments (GenBank AY494944) were found to be identical to that of an Austrian isolate of N. caninum but not to that of NC-1. This is the first isolation of viable N. caninum from Spain.  相似文献   

11.
Protection against vertical transmission in bovine neosporosis   总被引:13,自引:0,他引:13  
In this study we were interested to determine whether infection of cattle prior to pregnancy would afford any protection to the foetus if the dams were challenged with Neospora caninum at mid-gestation. The experiment comprised four groups of cattle: group 1, uninfected controls; group 2, inoculated with N. caninum tachyzoites 6 weeks prior to mating and then challenged with N. caninum at mid-gestation; group 3, naive cattle challenged with N. caninum at mid-gestation and group 4 were infected with N. caninum prior to mating and left unchallenged throughout pregnancy. Positive cell-mediated and humoral immune responses to N. caninum were recorded in groups 2 and 4 prior to pregnancy and in groups 2, 3 and 4 following challenge at mid-gestation. However there was a marked down regulation of the cell-mediated immune response in all groups around mid-gestation. There was a significant increase in rectal temperature response in animals in group 3 compared to group 2 following challenge but no other clinical symptoms of disease were recorded and all cattle proceeded to calving. At calving, pre-colostral blood samples were negative for antibodies to N. caninum in all the calves born to dams in groups 1, 2 and 4. In contrast, all the calves born to dams in group 3 had high levels of specific antibody to N. caninum indicating that they had been exposed to the parasite in utero. At post-mortem N. caninum DNA was detected in CNS, thymus and placental cotyledon samples in calves from group 3. All tissue samples from calves in the other 3 groups were negative for N. caninum DNA with the exception of one calf from group 2 where specific DNA was detected in a sample of spinal cord. These results suggest that the immune response generated in the dams in group 2 prior to pregnancy had protected against vertical transmission of the parasite following challenge at mid-gestation.  相似文献   

12.
The lichenicolous basidiomycete Marchandiomyces corallinus is widely distributed in North America and Europe, where it commonly is found on a variety of lichens. Theoretically either of these characteristics, a wide geographic range or generalized host ecology, could provide opportunities for genetic differentiation within this species. To determine how genetic variation is partitioned in M. corallinus, 12 fungal isolates were obtained from locations in North America and Europe; at two locations, in Washington County, Maine, and on the Isle of Mull in Scotland, fungi also were isolated from different lichen hosts. Vegetative mycelial compatibility tests were used to determine compatibility groupings from among the isolates; in addition, several PCR amplification products (RAPD, nuITS rDNA) were obtained for each isolate. A number of distinct compatibility groups were recognizable based on geography, not host ecology. In addition compatible isolates always were restricted to either North America or Europe. However RAPD markers indicated that compatible isolates are not always genetically identical. The presence of sequence heterozygosity at specific positions indicated that the isolates are heterokaryotic and a number of distinct haplotypes could be identified based on ITS variation at three separate locations. This type of genetic variation in these fungi suggests that sexual recombination is possible and that genetic differentiation has taken place recently as a result of geographic isolation, not host switching.  相似文献   

13.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

14.
15.
Neospora hughesi is a newly recognised parasite that is closely related to Neospora caninum, and is a cause of equine protozoal myeloencephalitis. We have characterised two N. hughesi immunodominant tachyzoite antigens which exhibit antigenic and molecular differences from the homologous tachyzoite antigens on N. caninum. These antigens on N. hughesi are referred to as NhSAG1 and NhSRS2, using the same mnemonics as used for the N. caninum antigens (NcSAG1 and NcSRS2), and are homologous to Toxoplasma gondii surface antigen 1 (SAG1) and SAG1-related sequence 2 (SRS2). The NcSAG1 and NcSRS2 were antigenically conserved in six different N. caninum isolates from cattle and dogs. The two equine-derived Neospora isolates, one designated as N. hughesi, were similar to each other but different from N. caninum. There was 6% difference in amino acid identity between NcSAG1 and NhSAG1, whereas there was a 9% difference when NcSRS2 and NhSRS2 were compared. The polymorphism of these genes and their corresponding proteins provide additional markers which can be used to distinguish N. caninum from N. hughesi.  相似文献   

16.
Aims:  To find out the prevalence of different serogroups of Escherichia coli ( E. coli ) and to detect heat-stable (ST) and heat-labile (LT) enterotoxin genes of enterotoxigenic E. coli (ETEC) from the faeces of mithun calves with diarrhoea.
Methods and Results:  Faecal samples obtained from 65 diarrhoeic mithun calves of under 2 months of age were examined for E. coli using polymerase chain reaction (PCR). Fifty-four E. coli isolates were obtained from those samples, which belonged to 38 different serogroups. Out of 54 isolates tested by PCR, two isolates (3·70%) belonging to serogroups O26 and O55 were found to possess gene that code for ST enterotoxin and one isolate (1·85%) belonging to serogroup O125 was found to carry LT enterotoxin gene.
Conclusions:  Escherichia coli isolates from diarrhoeic mithun calves were found to possess ST and LT enterotoxin genes, which are designated as ETEC, and these isolates can be detected through PCR using specific primers.
Significance and Impact of the Study:  This study reports the isolation of ETEC possessing ST and LT enterotoxin genes for the first time and ETEC could be a cause of diarrhoea in mithun calves leading to calf mortality.  相似文献   

17.
The genetic variability of 10 Cryptosporidium parvum isolates of human and animal origin was investigated using amplified fragment length polymorphism (AFLP). Analysis of fluorescent dye-labeled amplified products was carried out using an ABI PRISMS 377 DNA sequencer and ABI PRISMS GeneScan software. One-hundred and twelve primer combinations were evaluated using a single C. parvum isolate. The patterns generated were highly reproducible. For subsequent study, a subset of 9 primer pairs that yielded 30-90 DNA fragments after the polymerase chain reaction, within the size range of 50-500 bp, was used to screen the 10 C. parvum isolates, including 7 bovine, 1 equine, and 2 of human origin. The animal isolates produced identical fingerprint patterns with every primer combination tested. Of the 2 human isolates tested, 1 of the isolates, passaged in calves, generated the same AFLP DNA banding patterns as the animal isolates, whereas the other isolate, obtained directly from human feces, produced unique patterns. Polymorphism, detected by comparison of the fingerprint patterns of the latter human isolate with the common pattern shared by all other isolates, ranged from 17 to 35% for the 9 primer pairs. The results show that AFLP is a useful method for differentiating C. parvum isolates into 2 distinct genotypes.  相似文献   

18.
Canine isolates of Hammondia heydorni from Argentina, Brazil, and the United States were analysed for genetic diversity. A total of 14 isolates were tested for their ability to produce amplification using three PCR assays, one targeting the common toxoplasmatiid ITS-1 region and 2 amplifying novel, H. heydorni-specific loci, HhAP7 and HhAP10. While the ITS-1 fragments could be amplified from all isolates, only six isolates were capable of amplifying the fragments from the novel loci. The PCR products were further investigated for genetic diversity using restriction fragment length polymorphism (RFLP) and single strand conformation polymorphism (SSCP) techniques. Polymorphism in the digestion pattern was evident only at the HhAP10 locus, differentiating two of the Argentinean isolates from the remainder. Mobility shifts on SSCP gels revealed that the two Argentinean isolates were not only different from the other four isolates, but also differed from each other, both at the HhAP7 and HhAP10 loci. The ITS-1 fragments of all isolates were identical by RFLP. However, two distinct mobility patterns resulted when the products were electrophoresed on SSCP gels. Based on the sequence data from the ITS-1 and the two random loci, the isolates could be broadly classified into two distinct groups, within which minor polymorphisms were evident. In contrast, very little heterogeneity occurred in the sequences of corresponding ITS-1 regions of Neospora caninum and Toxoplasma gondii isolates. Thus, it is concluded that there is a considerable degree of microheterogeneity among isolates of H. heydorni. This diversity should be taken into consideration while attempting to elucidate the systematics, diagnostics, and biology of H. heydorni in relation to N. caninum.  相似文献   

19.
Neospora hughesi is a recently described apicomplexan parasite that has been associated with several cases of equine protozoal myeloencephalitis. The biology of this new parasite is just beginning to be defined. Towards this understanding, we report important differences between the nucleotide and deduced amino acid sequences of the dense granule proteins GRA6 and GRA7 of N. hughesi and Neospora caninum. This information can be used to differentiate the two species and contribute to further understanding of the prevalence and biology of N. hughesi. The newly defined proteins of N. hughesi are referred to as NhGRA6 and NhGRA7 in keeping with the protocol for naming homologous proteins of the Apicomplexa. Genes of the two dense granule proteins of N. hughesi (isolate Nh-A1) and four different isolates of N. caninum were isolated via PCR and their DNA sequences were determined. Computer analysis indicated that the two gene sequences were identical among all four N. caninum isolates. However, the gene for NhGRA6 was found to be 96 nucleotides longer at the 3' end than that of NcGRA6, resulting in a protein product that is 32 amino acids larger than NcGRA6. Two tandem repeat sequences were identified at the 3' end of the NhGRA6 gene. These repeat sequences contributed to the lengthening of the carboxy terminus of NhGRA6 in comparison with that of NcGRA6. The larger size of NhGRA6 was further confirmed by Western blot analysis in which NcGRA6 monospecific antibodies recognised a protein of approximately 42 kDa in N. hughesi whole tachyzoite preparation but a protein of 37 kDa in N. caninum whole tachyzoite preparation. Analysis of GRA7 gene sequences indicated a 6 and 14.8% difference at nucleotide and amino acid sequence level, respectively, between NcGRA7 and NhGRA7. Despite the same number of residues in the deduced amino acid sequences of all the GRA7 proteins, Western blot analysis indicated a difference in the migration pattern of NhGRA7 in comparison with NcGRA7. Results of our study indicate that diagnostic tests based on differences in dense granule sequences and antigenicity may have potential to differentiate between N. hughesi and N. caninum. Such diagnostic tests would be valuable tools to aid in our understanding of the epidemiology of these parasites. Additionally, dense granule proteins are immunogenic and they may have potential as use in recombinant vaccines against neosporosis.  相似文献   

20.
Scarce information is available about Neospora caninum oocysts and sporozoites, in part because only small numbers of oocysts have typically been produced by experimentally infected dogs. We hypothesized that I reason for low experimental production of oocysts is that dogs have been fed tissues from experimentally infected mice instead of tissues from cattle (which are natural intermediate hosts of N. caninum). In this study, 9 dogs were fed tissues from N. caninum-infected calves, and oocyst production was compared with 6 dogs that were fed infected mouse carcasses. The number of oocysts produced by dogs that ingested infected calf tissues (mean = 160,700) was significantly greater (P = 0.03) than the number of oocysts shed by dogs that ingested infected mice (mean = 5,400). The second goal of our experiment was to demonstrate cyclical oral transmission of N. caninum between dogs and cattle. As few as 300 oocysts were used to successfully infect calves, and tissues from these calves induced patent infections in 2 of 3 dogs; oocysts from I of these dogs were administered to another calf, and tissues from this calf subsequently induced a third dog to shed oocysts. Oocysts were confirmed to be N. caninum using a species-specific polymerase chain reaction technique. In addition, sporulated oocysts were used to recover N. caninum in vitro after digestion in an acid-pepsin solution and inoculation of cell monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号