首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive Oxygen Species (ROS) are continuously produced during seed development, from embryogenesis to germination, but also during seed storage. ROS play a dual role in seed physiology behaving, on the one hand, as actors of cellular signaling pathways and, on the other hand, as toxic products that accumulate under stress conditions. ROS, provided that their amount is tightly regulated by the balance between production and scavenging, appear now as being beneficial for germination, and in particular to act as a positive signal for seed dormancy release. Such an effect might result from the interplay between ROS and hormone signaling pathways thus leading to changes in gene expression or in cellular redox status. We also propose that changes in ROS homeostasis would play a role in perception of environmental factors by seeds during their germination, and thus act as a signal controlling the completion of germination. However, uncontrolled accumulation of ROS is likely to occur during seed aging or seed desiccation thus leading to oxidative damage toward a wide range of biomolecules and ultimately to necroses and cell death. We present here the concept of the "oxidative window for germination", which restricts the occurrence of the cellular events associated with germination to a critical range of ROS level, enclosed by lower and higher limits. Above or below the "oxidative window for germination", weak or high amounts of ROS, respectively, would not permit progress toward germination.  相似文献   

2.
3.
Reactive oxygen species and seed germination   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS) are continuously produced by the metabolically active cells of seeds, and apparently play important roles in biological processes such as germination and dormancy. Germination and ROS accumulation appear to be linked, and seed germination success may be closely associated with internal ROS contents and the activities of ROS-scavenging systems. Although ROS were long considered hazardous molecules, their functions as cell signaling compounds are now well established and widely studied in plants. In seeds, ROS have important roles in endosperm weakening, the mobilization of seed reserves, protection against pathogens, and programmed cell death. ROS may also function as messengers or transmitters of environmental cues during seed germination. Little is currently known, however, about ROS biochemistry or their functions or the signaling pathways during these processes, which are to be considered in the present review.  相似文献   

4.
At harvest, sunflower (Helianthus annuus L.) seeds are dormant and unable to germinate at temperatures below 15 degrees C. Seed storage in the dry state, known as after-ripening, is associated with an alleviation of embryonic dormancy allowing subsequent germination at suboptimal temperatures. To identify the process by which dormancy is broken during after-ripening, we focused on the role of reactive oxygen species (ROS) in this phenomenon. After-ripening entailed a progressive accumulation of ROS, namely superoxide anions and hydrogen peroxide, in cells of embryonic axes. This accumulation, which was investigated at the cellular level by electron microscopy, occurred concomitantly with lipid peroxidation and oxidation (carbonylation) of specific embryo proteins. Incubation of dormant seeds for 3 h in the presence of hydrogen cyanide (a compound that breaks dormancy) or methylviologen (a ROS-generating compound) also released dormancy and caused the oxidation of a specific set of embryo proteins. From these observations, we propose a novel mechanism for seed dormancy alleviation. This mechanism involves ROS production and targeted changes in protein carbonylation patterns.  相似文献   

5.
Freshly harvested seeds of Arabidopsis thaliana, Columbia (Col) accession were dormant when imbibed at 25°C in the dark. Their dormancy was alleviated by continuous light during imbibition or by 5 weeks of storage at 20°C (after-ripening). We investigated the possible role of reactive oxygen species (ROS) in the regulation of Col seed dormancy. After 24 h of imbibition at 25°C, non-dormant seeds produced more ROS than dormant seeds, and their catalase activity was lower. In situ ROS localization revealed that germination was associated with an accumulation of superoxide and hydrogen peroxide in the radicle. ROS production was temporally and spatially regulated: ROS were first localized within the cytoplasm upon imbibition of non-dormant seeds, then in the nucleus and finally in the cell wall, which suggests that ROS play different roles during germination. Imbibition of dormant and non-dormant seeds in the presence of ROS scavengers or donors, which inhibited or stimulated germination, respectively, confirmed the role of ROS in germination. Freshly harvested seeds of the mutants defective in catalase (cat2-1) and vitamin E (vte1-1) did not display dormancy; however, seeds of the NADPH oxidase mutants (rbohD) were deeply dormant. Expression of a set of genes related to dormancy upon imbibition in the cat2-1 and vet1-1 seeds revealed that their non-dormant phenotype was probably not related to ABA or gibberellin metabolism, but suggested that ROS could trigger germination through gibberellin signaling activation.  相似文献   

6.
Background Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens.Scope This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species.Conclusions Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields.  相似文献   

7.
The influence of seasonal frozen soil and buried depth on germination of mono maple (Acer mono Maxim.) seeds was studied in field conditions in winter in a sub-alpine region. Mono maple seeds almost lost their ability to germinate in non-freezing soil, while seasonal frozen soil treatments facilitated the germination accompanied with a progressive accumulation of reactive oxygen species (ROS). The result indicates that ROS may act as a positive signal for seed dormancy. However, exceeding accumulation of ROS led to decrease in germination rate. We suggest that the shift from a signaling to a deleterious role may be related to the accumulation of these ROS above a threshold level that leads to various cellular alterations and damage. The enhanced activities of antioxidant enzymes appear to be more closely related to freezing tolerance, because of their ability to scavenge ROS to avoid deleterious events. Seasonal frozen soil was beneficial in accelerating the germination of mono maple seeds. However, a slight increase of freezing temperature may have also facilitated the germination of mono maple seeds by enhanced activities of antioxidant enzymes. Hence, moderate winter warming may be beneficial to mono maple regeneration due to the improvement of seed germination, but the disappearance of seasonal frozen soil may lead to germination failure of the mono maple seeds.  相似文献   

8.

Background  

Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process.  相似文献   

9.
While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using “-omics” technologies together with physiological and biochemical approaches have revealed that seed germination is a very complex process that depends on multiple biochemical and molecular variables. The pivotal role of phytohormones in promoting germination now appears to be interdependent with ROS metabolism, involving mitogen-activated protein kinase cascade activation, gene expression and post-translational protein modifications. This review is, thus, an attempt to summarize the new discoveries involving ROS and seed germination. The study of these interactions may supply markers of seed quality that might eventually be used in breeding programs to improve crop yields.  相似文献   

10.
种子萌发是子代植株建立、生长和繁育的重要阶段,在种子植物生命周期中起重要作用。种子休眠是在发育过程中形成的,在生理成熟期达到峰值。种子休眠与萌发的植物激素调控可能是种子植物中一种高度保守的机制。细胞分裂素(CK)是植物体内的一种重要信号分子,调控植物生长发育的许多方面。生物活性CK的水平由其生物合成、活化、失活、再活化...  相似文献   

11.
Genetic differences in seed longevity of various Arabidopsis mutants   总被引:5,自引:0,他引:5  
Seeds gradually lose their viability during dry storage. The damage that occurs at the biochemical level can alter the seed physiological status and is affected by the storage conditions of the seeds. Although these environmental conditions controlling loss of viability have been investigated frequently, little information is available on the genetics of seed longevity. Using Arabidopsis mutants in defined developmental or biochemical pathways such as those affected in seed coat composition, seed dormancy, hormone function and control of oxidative stress, we tried to gain insight into the genes and mechanisms controlling viability of stored seeds. Mutations like abscisic acid insensitive3 ( abi3 ) as well as abscisic acid deficient1 ( aba1 ) show reduced longevity, which may be partially related to the seed dormancy phenotype of these mutants. Mutants with seed coat alterations, especially aberrant tests shape ( ats ), showed a stronger reduction in germination percentage after storage, indicating the importance of a 'functional' seed coat for seed longevity. A specific emphasis was placed on mutants affected in dealing with Reactive Oxygen Species (ROS). Because several pathways are involved in protection against ROS and because gene redundancy is a common feature in Arabidopsis , 'double' mutants were generated. These 'double' mutants and the corresponding single mutants were subjected to a controlled deterioration test (CDT) and a germination assay on hydrogen peroxide (H2O2) after prolonged storage at two relative humidities. CDT and germination on H2O2 affected all genotypes, although it appears that other effects like genetic background are more important than the deficiencies in the ROS scavenging pathway. Explanations for this limited effect of mutations affecting ROS scavenging are discussed.  相似文献   

12.
The role of nitric oxide in the germination of plant seeds and pollen   总被引:1,自引:0,他引:1  
Two complex physiological processes, with opposite positions in the plant's life-cycle, seed and pollen germination, are vital to the accomplishment of successful plant growth and reproduction. This review summarizes the current state of knowledge of the intersection of NO signalling with the signalling pathways of ABA, GA, and ethylene; plant hormones that control the release of plant seeds from dormancy and germination. The cross-talk of NO and ROS is involved in the light- and hormone-specific regulation of seeds’ developmental processes during the initiation of plant ontogenesis. Similarly to seed germination, the mechanisms of plant pollen hydration, germination, tube growth, as well as pollen-stigma recognition are tightly linked to the proper adjustment of NO and ROS levels. The interaction of NO with ROS and secondary messengers such as Ca2+, cAMP and cGMP discovered in pollen represent a common mechanism of NO signalling. The involvement of NO in both breakpoints of plant physiology, as well as in the germination of spores within fungi and oomycetes, points toward NO as a component of an evolutionary conserved signalling pathway.  相似文献   

13.
Allantoin as the metabolite of purine catabolism can store and remobilize nitrogen for plant growth and development. However, emerging evidence suggests it also contributes to plant tolerance to stress response through altering abscisic acid (ABA) and reducing reactive oxygen species (ROS) level. 1-CYS PEROXIREDOXIN (PER1) is a seed-specific antioxidant that enhances seed longevity through scavenging ROS over-accumulation. High temperature (HT) suppresses seed germination and induces seed secondary dormancy, called as seed germination thermoinhibition. However, the mechanism that allantoin and PER1 regulate seed germination thermoinhibition remains unknown. In this study, we reported that allantoin treatment enhances seed germination under HT stress. Consistently, the aln mutants displayed higher seed germination, as well as more accumulation of endogenous allantoin, than that of wild-type control. Further biochemical and genetic analyses showed that allantoin reduces ABA content under HT, and allantoin targets PER1 to efficiently scavenge HT-induced ROS accumulation, meanwhile, the function of allantoin requires PER1 during seed gemination thermotolerance. Collectively, our finding proposes a novel function of allantoin in enhancing seed germination tolerance to HT, and uncovers the underlying mechanism by which allantoin regulates seed germination through altering ABA metabolism and PER1-mediated ROS level under HT stress.  相似文献   

14.
DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy   总被引:2,自引:0,他引:2  
Seed dormancy is a key adaptive trait in plants responsible for the soil seed bank. The long established hormone-balance theory describes the antagonistic roles of the dormancy promoting plant hormone abscisic acid (ABA), and the germination promoting hormone gibberellin (GA) in dormancy control. Light, temperature, and other dormancy-breaking signals function to modulate the synthesis and perception of these hormones in the seed. However, the way in which these hormones control dormancy in the imbibed seed remains unknown. Here, we show that the DELLA protein regulators of the GA response are required for dormancy and describe a model through which hormone signal integration and dormancy regulation is achieved. We demonstrate that cotyledon expansion precedes radicle emergence during Arabidopsis seed germination and that a striking correlation exists between final seedling cotyledon size and seed dormancy in the DELLA mutants. Furthermore, twelve previously characterized seed-dormancy mutants are also defective in the control of cotyledon size in a manner consistent with their effect on germination potential. We propose that DELLA-mediated, light-, temperature-, and hormone-responsive cotyledon expansion prior to radicle emergence overcomes dormancy imposed by the seed coat and underlies seed-dormancy control in Arabidopsis.  相似文献   

15.
Reactive oxygen (ROS) and nitrogen (RNS) species play a signaling role in seed dormancy alleviation and germination. Their action may be described by the oxidative/nitrosative “window/door”. ROS accumulation in embryos could lead to oxidative modification of protein through carbonylation. Mature apple (Malus domestica Borkh.) seeds are dormant and do not germinate. Their dormancy may be overcome by 70–90 days long cold stratification. The aim of this work was to analyze the relationship between germinability of embryos isolated from cold (5 °C) or warm (25 °C) stratified apple seeds and ROS or nitric oxide (NO) production and accumulation of protein carbonyl groups. A biphasic pattern of variation in H2O2 concentration in the embryos during cold stratification was detected. H2O2 content increased markedly after 7 days of seeds imbibition at 5 °C. After an additional two months of cold stratification, the H2O2 concentration in embryos reached the maximum. NO production by the embryos was low during entire period of stratification, but increased significantly in germination sensu stricto (i.e. phase II of the germination process). The highest content of protein carbonyl groups was detected after 6 weeks of cold stratification treatment. Fluctuation of H2O2 and protein carbonylation seems to play a pivotal role in seed dormancy alleviation by cold stratification, while NO appears to be necessary for seed germination.  相似文献   

16.
Short-term (3 or 6 h) pre-treatment of apple (Malus domestica Borkh.) embryos with nitric oxide (NO) or hydrogen cyanide (HCN) induces transient accumulation of reactive oxygen species (ROS) leading to dormancy removal and germination. We demonstrated that enhanced NO emission by apple embryos during early phase of germination “sensu stricto” is required for seed transition from dormant into non-dormant state, and may be described by the model of “nitrosative door”, analogous to “oxidative window”. Cellular ROS concentration, resulting from NO or HCN embryo pre-treatment, seems to be under severe control of antioxidant system. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPX) and total peroxidases (Prxs) was determined during NO and HCN-mediated germination “sensu stricto” of embryos. CAT and SOD activity increased transiently 24 h after embryos pre-treatment, while GR and Prx activity was stimulated mainly after 96 h. The most evident alterations were detected in GPX activity, being more than threefold stimulated by NO or HCN. Based on this results, we conclude that these reactive molecules act simultaneously crossing their signaling pathways and we propose that ROS, reactive nitrogen species, HCN at accurate level are essential during seed germination as signaling factors.  相似文献   

17.
18.
种子休眠的研究进展   总被引:1,自引:0,他引:1  
种子休眠是植物在长期系统发育进程中获得的一种适应环境变化的特性。这种特性能够确保物种在恶劣的环境中存活,减少同一物种中个体之间的竞争,以及防止种子在不适宜的季节萌发。该文综述了种子休眠的类型、种子休眠的发育与连续群、种子休眠的调节、与休眠诱导、维持和释放有关的蛋白以及种子休眠的进化,并提出了今后种子休眠研究的主要问题。  相似文献   

19.
种子休眠的研究进展   总被引:15,自引:0,他引:15  
种子休眠是植物在长期系统发育进程中获得的一种适应环境变化的特性。这种特性能够确保物种在恶劣的环境中存活, 减少同一物种中个体之间的竞争, 以及防止种子在不适宜的季节萌发。该文综述了种子休眠的类型、种子休眠的发育与连续群、种子休眠的调节、与休眠诱导、维持和释放有关的蛋白以及种子休眠的进化, 并提出了今后种子休眠研究的主要问题。  相似文献   

20.
Aquaporins influence water flow in plants, yet little is known of their involvement in the water‐driven process of seed germination. We therefore investigated their role in seeds in the laboratory and under field and global warming conditions. We mapped the expression of tonoplast intrinsic proteins (TIPs) during dormancy cycling and during germination under normal and water stress conditions. We found that the two key tonoplast aquaporins, TIP3;1 and TIP3;2, which have previously been implicated in water or solute transport, respectively, act antagonistically to modulate the response to abscisic acid, with TIP3;1 being a positive and TIP3;2 a negative regulator. A third isoform, TIP4;1, which is normally expressed upon completion of germination, was found to play an earlier role during water stress. Seed TIPs also contribute to the regulation of depth of primary dormancy and differences in the induction of secondary dormancy during dormancy cycling. Protein and gene expression during annual cycling under field conditions and a global warming scenario further illustrate this role. We propose that the different responses of the seed TIP contribute to mechanisms that influence dormancy status and the timing of germination under variable soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号