首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal storage reserve of sugar beet seeds is starch, which is localised in the perisperm. Additional storage reserves include the seed proteins, albumins, globulins and glutclins, which are exclusively located in the embryo. Soluble sugars are also detectable in all the organs of the mature seed. The time-course of reserve mobilisation in the different organs of the sugar beet ( Beta vulgaris L. cv. Regina) seed during germination and early seedling growth is documented, with particular reference to changes in (a) activities of hydrolases: a-amylase, β-amylase, and α-glucosidases; (b) levels of carbohydrates and (c) proteins. Amylase activities increase substantially in both cotyledons, as well as the perisperm, whereas the increase in α-glucosidase activities is largely confined to the perisperm.  相似文献   

2.
? Premise of the study: Despite their highly reduced morphology, Hydatellaceae bear the unmistakable embryological signature of Nymphaeales, including a starch-rich maternal perisperm and a minute biparental endosperm and embryo. The co-occurrence of perisperm and endosperm in Nymphaeales and other lineages of flowering plants, and their respective functions during the course of seed development and embryo germination, remain enigmatic. ? Methods: Development of the embryo, endosperm, and perisperm was examined histologically from fertilization through germination in flowers and fruits of Trithuria submersa. ? Key results: The embryo of T. submersa initiates two cotyledons prior to seed maturity/dormancy, and their tips remain in contact with the endosperm throughout germination. The endosperm persists as a single layer of cells and serves as the interface between the embryo and the perisperm. The perisperm contains carbohydrates and proteins, and functions as the main storage tissue. The endosperm accumulates proteins and aleurone grains and functions as a transfer cell layer. ? Conclusions: In Nymphaeales, the multiple roles of a more typical endosperm have been separated into two different tissues and genetic entities: a maternal perisperm (nutrient acquisition, storage, mobilization) and a minute biparental endosperm (nutrient transfer to the embryo). The presence of perisperms among several other ancient lineages of angiosperms suggests a modest degree of developmental and functional lability for the nutrient storage tissue (perisperm or endosperm) within seeds during the early evolution of flowering plants. Finally, we examine the evolutionary developmental hypothesis that, contrary to longstanding assumptions, an embryo-nourishing perisperm along with a minute endosperm may represent the plesiomorphic condition for flowering plants.  相似文献   

3.

Background and Aims

Obligate root parasitic plants of the Orobanchaceae do not germinate unless they chemically detect a host plant nearby. Members of this family, like Orobanche, Phelipanche and Striga, are noxious weeds that cause heavy damage to agriculture. In spite of their economic impact, only a few light microscopical studies of their minute seeds have been published, and there is no knowledge of their ultrastructure and of the role each tissue plays during the steps preceding germination. This paper describes the ultrastructure of Phelipanche seeds and contributes to our understanding of seed tissue function.

Methods

Seeds of P. aegyptiaca were examined under light, scanning electron, transmission electron and fluorescence microscopy following various fixations and staining protocols. The results were interpreted with physiological data regarding mode of water absorption and germination stimulation.

Key Results and Conclusions

The endothelium, which is the inner layer of the testa, rapidly absorbs water. Its interconnected cells are filled with mucilage and contain labyrinthine walls, facilitating water accumulation for germination that starts after receiving germination stimuli. Swelling of the endothelium leads to opening of the micropyle. The perisperm cells underneath this opening mediate between the rhizosphere and the embryo and are likely to be the location for the receptors of germination stimuli. The other perisperm cells are loaded with lipids and protein bodies, as are the endosperm and parts of the embryo. In the endosperm, the oil bodies fuse with each other while they are intact in the embryo and perisperm. Plasmodesmata connect the perisperm cells to each other, and the cells near the micropyle tightly surround the emerging seedling. These perisperm cells, and also the proximal embryo cells, have dense cytoplasmic contents, and they seem to represent the two seed components that are actively involved in transfer of reserve nutrients to the developing seedling during germination.  相似文献   

4.
A histochemical and ultrastructural study of yucca seed proteins   总被引:4,自引:0,他引:4  
Embryos and nutritive tissues in ungerminated Yucca seeds of 4 species contain many spherical bodies which stain positively for proteins. Two distinct morphological types were observed at both the light and electron microscope levels. A meshwork-type consists of electron-dense and electron-transparent regions in which are embedded slightly birefringent inclusions. The second type, named the core-type, consists of a core surrounded by a matrix in which the inclusions are embedded. A single unit membrane surrounds each protein body. Both types are present in the embryo while only the core-type protein body appears in the surrounding nutritive tissue (perisperm). All regions in each of the two protein body types, except the inclusions, stain histochemically for proteins. Seeds were planted at 2-day intervals and allowed to germinate through 14 days. As germination commences (day 0) protein bodies in the embryo begin to break down. By day 4 the bodies are depleted in embryos of 3 of the 4 species. About day 4, protein bodies in perisperm surrounding the embryo begin to break down and this process continues outward to the seed coat until day 14 when all seed proteins have disappeared. During germination the protein bodies in the embryo and perisperm of 3 species coalesce and then undergo breakdown. In a fourth species, there is no appreciable increase in size of the bodies, but an erosion of the periphery and possibly internally as well takes place, followed by ultimate dissolution.  相似文献   

5.
Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post‐translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.  相似文献   

6.
We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue.  相似文献   

7.
芡实种子萌发期的生物学特性与结构解剖   总被引:1,自引:0,他引:1  
施国新  徐祥生   《广西植物》1989,9(3):255-258+294
本文描述了芡实种子的结构,种子的萌发和幼苗的形态特征。成熟种子必须置于水中保存,以增大胚体,并完成后熟作用。外胚乳是种子萌发和幼苗生长的主要营养来源。萌发后在子叶叶柄基部外侧形成的突起结构可能起固着作用。  相似文献   

8.
The purpose of this study was to investigate the effects of various presowing treatments on the germinability (final germination percentage) and germination rate of loquat seeds in order to increase seedling production in nurseries (applied research) as well as provide answers for important physiological issues related to loquat seeds and their seed coat (basic research). Three experiments were carried out with various pre-sowing treatments. These treatments included full or partial removal of seed coat (perisperm), partial cutting of cotyledons as well as moist chilling at 5°C for 13 days and/or soaking the seeds in water or 250 ppm gibberellic acid (GA3) solution for 24 h. According to the results, cotyledons excision resulted in delayed germination, regardless of the presence or absence of the seed coat in comparison with the decoated seeds that demonstrated the highest germination rate amongst them. In addition, even the partial excision of seed coats affected positively both the germinability and the germination rate, compared to the control-intact seeds. Furthermore, control-intact seeds had a higher germination percentage when exposed to moist chilling independently of the application or not of gibberellin; while the combination of gibberellin application and moist chilling improved both the percentage and the rate of germination of decoated seeds. In conclusion, the role of perisperm (seed coat) in the germination procedure of loquat seeds seems to be important, indicating the existence of seed coat-imposed dormancy on loquat seeds. Finally, the existence of a mild endogenous embryo-dormancy on loquat is also discussed.  相似文献   

9.
Seed of the genusGlycine Willd. typically exhibits a muriculate appearance resulting from adherence to the true seed coat of the perisperm or inner pod wall layer. Thickened cell walls of the perisperm superimpose a reticulate network on the seed coat, the type of network ranging from alveolate to stellate depending on the shape of the perisperm cells. Tubercles distributed at intervals give the seed its roughened appearance. Seed lacking an attached perisperm appears smooth and shiny. Seed morphology of 62 collections representing the six species of the subgenusGlycine is examined in detail to elucidate inter-and intraspecific variability. Seed perisperm pattern appears to be characteristic for each species, but there are exceptions.Glycine canescens F. J. Herrn. andG. clandestina Willd. seeds possess a reticulate network and tubercles of irregular shape, the perisperm appearing granular inG. clandestina. Seeds ofG. latrobeana (Meissn.) Benth. andG. tabacina (Labill.) Benth. lack a distinct network and have stellate tubercles; the perisperm is granular inG. latrobeana and some plants ofG. tabacina. A few collections ofG. clandestina approachG. tabacina in seed appearance.Glycine tomentella Hayata seeds exhibit a regularly alveolate arrangement, while those ofG. falcata Benth. lack a perisperm layer altogether. Variation in seed coat within a species can usually be linked to differences in chromosome number or some aspect of gross morphology. Diploid collections ofG. tomentella (2n = 40) exhibit recognizable differences in seed morphology compared with tetraploids (2n = 80), coincident with other striking dissimilarities in gross morphology. An incompletely attached perisperm is accompanied by aneuploidy in severalG. tomentella accessions, while other 78 and 38 chromosome aneuploids produce normal seeds.  相似文献   

10.
11.
Oxidative signalling by ROS has been demonstrated to play a role in seed dormancy alleviation, but the detailed molecular mechanisms underlying this process remain largely unknown. Here, we show dynamic differences in redox-sensitive proteome upon wheat seed dormancy release. Using thiol-specific fluorescent labelling, solubility-based protein fractionation, 2-D IEF PAGE, and MS analysis in conjunction with wheat EST sequence libraries, proteins with reversible oxidoreductive changes were characterized. Altogether, 193 reactive Cys were found in 79 unique proteins responding differentially in dormant, non-dormant, abscisic, or gibberellic acid-treated seed protein extracts from RL4137, a wheat cultivar with extreme dormancy. The identified proteins included groups that are redox-, stress-, and pathogen-responsive, involved in protein synthesis and storage, are enzymes of carbohydrate metabolism, proteases, and those involved in transport and signal transduction. Two types of redox response could be detected: (i) a dramatic increase in protein thiol redox state in seeds during imbibition and hormonal treatment; (ii) higher antioxidant capacity related to sensing of a threshold redox potential and balancing the existing redox pools, in dry dormant versus non-dormant seeds. These results highlight occurrence of the antioxidant defence mechanisms required for the protection of seed during a dormancy stage.  相似文献   

12.
13.
Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.  相似文献   

14.
Several barley (Hordeum vulgare) cultivars are used in the production of malt for brewing. The malt quality depends on the cultivar, its growth and storage conditions, and the industrial process. To enhance studies on malt quality, we embarked on a proteome analysis approach for barley seeds and malt. The proteome analysis includes two-dimensional (2-D) gel electrophoresis, mass spectrometry, and bioinformatics for identification of selected proteins. This project initially focused on proteins in major spots in the neutral isoelectric point range (pI 4-7) including selected spots that differ between four barley cultivars. The excellent malting barley cultivar Barke was used as reference. Cultivar differences in the 2-D gel spot patterns are observed both at the seed and the malt level. In seed extracts one of the proteins causing variations has been identified as an alpha-amylase/trypsin inhibitor. In malt extracts multiple forms of the alpha-amylase isozyme 2 have been identified in varying cultivar characteristic spot patterns. The present identification of proteins in major spots from 2-D gels includes 27 different proteins from 42 spots from mature seed extract, while only three specific proteins were identified by analysing 13 different spots from the corresponding malt extract. It is suggested that post-translational processing causes the same protein to occur in different spots.  相似文献   

15.
A two-dimensional proteome map of maize endosperm   总被引:8,自引:0,他引:8  
We have established a proteome reference map for maize (Zea mays L.) endosperm by means of two-dimensional gel electrophoresis and protein identification with LC-MS/MS analysis. This investigation focussed on proteins in major spots in a 4-7 pI range and 10-100 kDa M(r) range. Among the 632 protein spots processed, 496 were identified by matching against the NCBInr and ZMtuc-tus databases (using the SEQUEST software). Forty-two per cent of the proteins were identified against maize sequences, 23% against rice sequences and 21% against Arabidopsis sequences. Identified proteins were not only cytoplasmic but also nuclear, mitochondrial or amyloplastic. Metabolic processes, protein destination, protein synthesis, cell rescue, defense, cell death and ageing are the most abundant functional categories, comprising almost half of the 632 proteins analyzed in our study. This proteome map constitutes a powerful tool for physiological studies and is the first step for investigating the maize endosperm development.  相似文献   

16.
Muskmelon (Cucumis melo L.) embryos are enclosed in an envelopeof tissue consisting of a layer of endosperm and a multi-cell-layeredperisperm that the radicle must penetrate for germination tooccur. The force and energy required to penetrate the perispermenvelope tissue were measured using an Instron universal testingmachine at a crosshead speed of 5 mm min–1 after 0, 10,15, 22, 23, and 25 h of imbibition at 25C. The cellular structureof perisperm envelope tissue surrounding the radicle was observedafter 10, 15, 20, 25, and 48 h of imbibition using scanningelectron microscopy. The force required to puncture 5-mm-long,micropylar seed pieces declined steadily from 1.65 N in driedseeds to 0.65 N after 21 h of imbibition. The penetration energydeclined from 3.0 N mm in dry seeds to 1.1 N mm at 21 h afterthe start of imbibition when the first seeds germinated. Theforce and energy required to penetrate germinated seed pieceswere 0.55 N and 0.9 N mm, respectively, so the net punctureforce and energy needed to rupture the micropylar region ofthe perisperm envelope was roughly 0.10 N and 0.2 N mm at radicleemergence, respectively. Instron measurements of penetrationforce and energy decreased dramatically at crosshead speedsless than the 5 mm min–1. Crosshead speeds greater than5 mm min–1 may overestimate the pressure needed to ruptureperisperm and endosperm tissues. Intracellular cracks were firstobserved in SEM images 15 h after the start of imbibition, andafter 20 h cracking was apparent throughout the micropylar regionof the perisperm envelope. The perisperm envelope ruptured inone of two ways, coincident with radicle emergence. In approximately85% of muskmelon seeds, a large crack formed in the perispermenvelope adjacent to the radicle, while in roughly 15 % a circulararea of the perisperm envelope detached during radicle emergence.In dead seeds, the penetration force remained constant from10–24 h after the start of imbibition, and there wereno visible signs of tissue degradation. Cellular degradationand weakening of the perisperm envelope tissue precedes radicleemergence in muskmelon seeds. Key words: Seed, Instron, turgor, cell wall, electron microscopy, Cucumis melo  相似文献   

17.
Proteomic analysis of arabidopsis seed germination and priming   总被引:33,自引:0,他引:33       下载免费PDF全文
To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.  相似文献   

18.
We have established a proteome reference map for Medicago truncatula root proteins using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to aid the dissection of nodulation and root developmental pathways by proteome analysis. M. truncatula has been chosen as a model legume for the study of nodulation-related genes and proteins. Over 2,500 root proteins could be displayed reproducibly across an isoelectric focussing range of 4-7. We analysed 485 proteins by peptide mass fingerprinting, and 179 of those were identified by matching against the current M. truncatula expressed sequence tag (EST) database containing DNA sequences of approximately 105,000 ESTs. Matching the EST sequences to available plant DNA sequences by BLAST searches enabled us to predict protein function. The use of the EST database for peptide identification is discussed. The majority of identified proteins were metabolic enzymes and stress response proteins, and 44% of proteins occurred as isoforms, a result that could not have been predicted from sequencing data alone. We identified two nodulins in uninoculated root tissue, supporting evidence for a role of nodulins in normal plant development. This proteome map will be updated continuously (http://semele.anu.edu.au/2d/2d.html) and will be a powerful tool for investigating the molecular mechanisms of root symbioses in legumes.  相似文献   

19.
20.
A variety of mechanisms have been proposed to account for the extension of life span in seeds (seed longevity). In this work, we used Arabidopsis (Arabidopsis thaliana) seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time up to 7 d. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results revealed essential mechanisms for seed vigor, such as translational capacity, mobilization of seed storage reserves, and detoxification efficiency. Finally, this work shows that similar molecular events accompany artificial and natural seed aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号