首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PspC recruits complement factor H (FH) to the pneumococcal surface. While there is differential expression of pspC during infection, detection of PspC on the surface of viable pneumococci is difficult due to variability among PspCs. We analyzed FH binding to detect PspC expression on the surface of pneumococcal isolates from different pathological sources. Using flow cytometry, we investigated FH-binding to 89 low-passage clinical isolates classified by disease manifestation (systemic, mucosal, or carriage). Carriage isolates recruited significantly more FH to their surfaces than either systemic or mucosal isolates, and this binding was independent of capsular serotype.  相似文献   

2.
Streptococcus pneumoniae, a human pathogen, is naturally capable of colonizing the upper airway and sometimes disseminating to remote tissue sites. Previous studies have shown that S. pneumoniae is able to evade complement-mediated innate immunity by recruiting complement factor H (FH), a complement alternative pathway inhibitor. Pneumococcal binding to FH has been attributed to choline-binding protein A (CbpA) of S. pneumoniae and its allelic variants, all of which are surface-exposed proteins. In this study, we sought to determine the molecular basis of the CbpA-FH binding interaction. Initial deletional analysis of the CbpA protein in strain D39 (capsular serotype 2) revealed that the N-terminal region of 89 amino acids in the mature CbpA protein is required for FH binding. Immunofluorescence microscopy analysis showed that this region of CbpA is also necessary for FH deposition to the surface of the intact pneumococci. Moreover, recombinant proteins representing the 104 amino acids of the N-terminal CbpA alone was sufficient for high affinity binding to FH (KD < 1 nm). The FH binding activity was finally localized to a 12-amino acid motif in the N-terminal CbpA by peptide mapping. Further kinetic analysis suggested that additional amino acids downstream of the 12-amino acid motif provide necessary structural or conformational support for the CbpA-FH interaction. The 12-amino acid motif and its adjacent regions contain highly conserved residues among various CbpA alleles, suggesting that this region may mediate FH binding in multiple pneumococcal strains.  相似文献   

3.
Factor H is a major regulatory protein of the complement system. The complete cDNA coding sequence has been derived from overlapping clones, and a polymorphism at base 1277 has been characterized. In four clones there is a T at nucleotide 1277 and in two others there is a C. This T/C change represents a tyrosine/histidine polymorphism at position 384 in the derived amino acid sequence. Protein sequence studies on peptides generated by trypsin digestion of factor H, purified from pooled plasma from 12 donors, confirmed the presence of both tyrosine and histidine at this position. Tyrosine and histidine were observed in a ratio of 2 : 1, respectively, and therefore this polymorphism is likely to represent a sequence difference between the two most abundant charge variants, FH1 and FH2, of factor H.  相似文献   

4.
SpsA, a pneumococcal surface protein belonging to the family of choline-binding proteins, interacts specifically with secretory immunglobulin A (SIgA) via the secretory component (SC). SIgA and free SC from mouse, rat, rabbit and guinea-pig failed to interact with SpsA indicating species-specific binding to human SIgA and SC. SpsA is the only pneumococcal receptor molecule for SIgA and SC as confirmed by complete loss of SIgA and SC binding to a spsA mutant. Analysis of recombinant SpsA fusion proteins showed that the binding domain is located in the N-terminal region of SpsA. By the use of different truncated N-terminal SpsA fusion proteins, the minimum binding domain was shown to be composed of 112 amino acids (residues 172-283). The sequence of this 112-amino-acids domain was used to spot synthesize 34 overlapping peptides, consisting of 15 amino acids each, with an offset of three amino acids on a cellulose membrane. One of the peptides reacted specifically with both SIgA and SC. By using a second membrane with immobilized synthetic peptides of decreasing length containing parts of the identified 15-amino-acid motif a hexapeptide, YRNYPT was identified as the binding motif for SC and SIgA. SpsA proteins with a size smaller than the assay-positive domain of 112 amino acids were able to inhibit the interaction of SIgA and pneumococci provided they contained the binding motif. The results indicated that the hexapeptide YRNYPT located in SpsA of pneumococcal strain type 1 (ATCC 33400) between amino acids 198 and 203 is involved in SIgA and SC binding. Because synthetic peptides containing only parts of the hexapeptide also assayed positive, these results further suggest that at least the amino acids YPT of the identified hexapeptide are critical for binding to SC and SIgA. Amino acid substitutions in the identified putative binding motif abolished SC-/SIgA-binding activity of the mutated SpsA protein, confirming the functional activity of this hexapeptide and the critical role of the amino acids YPT in SC and SIgA binding. Identification of this motif, which is highly conserved in SpsA protein among different serotypes, might contribute towards a new peptide based vaccine strategy.  相似文献   

5.
Pathogenic microbes acquire human complement inhibitors to circumvent the innate immune system. In this study, we identify two novel host-pathogen interactions, factor H (FH) and factor H-like protein 1 (FHL-1), the inhibitors of the alternative pathway that binds to Hib. A collection of clinical Haemophilus influenzae isolates was tested and the majority of encapsulated and unencapsulated bound FH. The isolate Hib 541 with a particularly high FH-binding was selected for detailed analysis. An increased survival in normal human serum was observed with Hib 541 as compared with the low FH-binding Hib 568. Interestingly, two binding domains were identified within FH; one binding site common to both FH and FHL-1 was located in the N-terminal short consensus repeat domains 6-7, whereas the other, specific for FH, was located in the C-terminal short consensus repeat domains 18-20. Importantly, both FH and FHL-1, when bound to the surface of Hib 541, retained cofactor activity as determined by analysis of C3b degradation. Two H. influenzae outer membrane proteins of approximately 32 and 40 kDa were detected with radiolabeled FH in Far Western blot. Taken together, in addition to interactions with the classical, lectin, and terminal pathways, H. influenzae interferes with the alternative complement activation pathway by binding FH and FHL-1, and thereby reducing the complement-mediated bactericidal activity resulting in an increased survival. In contrast to incubation with active complement, H. influenzae had a reduced survival in FH-depleted human serum, thus demonstrating that FH mediates a protective role at the bacterial surface.  相似文献   

6.
Site-specific N-glycan characterization of human complement factor H   总被引:1,自引:0,他引:1  
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein.  相似文献   

7.

Background

Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity.

Methodology and Principal Findings

C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS.

Conclusions

These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains.  相似文献   

8.
9.
Streptococcus pneumoniae, also known as the pneumococcus, contains several surface proteins that along with the polysaccharide capsule function in antiphagocytic activities and evasion of the host immune system. These pneumococcal proteins interact with the host immune system in various ways and possess a wide range of biological activities that suggests that they may be involved at different stages of pneumococcal infection. PspC, also known as CbpA and SpsA, is one of several pneumococcal surface proteins that binds host proteins, including factor H (FH) and secretory IgA (sIgA) via the secretory component. Previous work by our laboratory has demonstrated that PspC on the surface of live pneumococcal cells binds FH. This paper provides evidence that FH activity is maintained in the presence of PspC and that the PspC binding site is located in the short consensus repeat 6-10 region of FH. We also report for the first time that although both FH and sIgA binding has been localized to the alpha-helical domain of PspC, the binding of FH to PspC is not inhibited by sIgA. ELISA, surface plasmon resonance, and flow cytometry indicate that the two host proteins do not compete for binding with PspC and likely do not share the same binding sites. We confirmed by Western analysis that the binding sites are separate using recombinant PspC proteins. These PspC variants bind FH yet fail to bind sIgA. Thus, we conclude that FH and sIgA can bind concurrently to the alpha-helical region of PspC.  相似文献   

10.
The important human pathogen Streptococcus pneumoniae was found to absorb factor H, an inhibitor of complement, from human plasma. We identified the gene encoding a novel surface protein, factor H-binding inhibitor of complement (Hic), in the pspC locus of type 3 pneumococci. Unlike PspC proteins in other serotypes, Hic is anchored to the cell wall by means of an LPXTG motif, and the overall sequence homology to various PspC proteins is low. However, the NH(2)-terminal region showed significant homology to the NH(2)-terminal region of several PspC proteins. A fragment of Hic, covering this homologous region, was expressed as a glutathione S-transferase (GST) fusion protein. GST:Hic(39-261) bound radiolabeled factor H and inhibited binding of factor H to pneumococci of different serotypes. Interaction kinetics between GST:Hic(39-261) and factor H were studied with surface plasmon resonance and showed a high affinity binding (K(A) = 5 x 10(7), K(D) = 2.3 x 10(-)(8)). Mutant pneumococci lacking Hic showed no absorption of factor H in human plasma and no binding of radiolabeled factor H, suggesting that Hic is responsible for factor H-binding in type 3 pneumococci. Factor H-dependent inhibition of the alternative pathway was not diminished by the presence of GST:Hic(39-261). In addition, an intrinsic inhibitory effect of Hic is suggested.  相似文献   

11.
The complete amino acid sequence of human complement factor H.   总被引:17,自引:2,他引:17       下载免费PDF全文
The complete amino acid sequence of the human complement system regulatory protein, factor H, has been derived from sequencing three overlapping cDNA clones. The sequence consists of 1213 amino acids arranged in 20 homologous units, each about 60 amino acids long, and an 18-residue leader sequence. The 60-amino-acid-long repetitive units are homologous with those found in a large number of other complement and non-complement proteins. Two basic C-terminal residues, deduced from the cDNA sequence, are absent from factor H isolated from outdated plasma. A tyrosine/histidine polymorphism was observed within the seventh homologous repeat unit of factor H. This is likely to represent a difference between the two major allelic variants of factor H. The nature of the cDNA clones indicates that there is likely to be an alternative splicing mechanism, resulting in the formation of at least two species of factor H mRNA.  相似文献   

12.
Sudden sensorineural hearing loss (SSNHL) is one of the most common diseases encountered by otolaryngologists; however, the etiology is unclear. The aim of this study was to assess the association between SSNHL and polymorphism of complement factor H (CFH) Y402H, which is implicated in age-related macular degeneration. We conducted a case-control study, in which the cases were 72 SSNHL patients and the controls were 2161 residents selected randomly from the resident register. The odds ratio (OR) for SSNHL risk was determined using the additive-genetic model of CFH Y402H polymorphism. The OR for SSNHL risk was 1.788 (95% confidence interval [CI]: 1.008-3.172) with no adjustments and 1.820 (CI: 1.025-3.232) after adjusting for age and sex. Of the three lifestyle-related diseases hypertension, dyslipidemia, and diabetes, only diabetes was significantly associated with SSNHL risk. We classified both the controls and SSNHL patients into those with or without diabetes, and the OR for SSNHL risk was 6.326 (CI: 1.885-21.225) in diabetic subjects and 1.214 (CI: 0.581-2.538) in nondiabetic subjects. We conclude that CFH Y402H polymorphism and SSNHL risk are significantly related, and that diabetic CFH Y402H minor allele carriers may be susceptible to SSNHL.  相似文献   

13.
Streptococcus pneumoniae is an important cause of upper and lower respiratory tract infections, meningitis, peritonitis, bacterial arthritis, and sepsis. Here we have studied a novel immune evasion mechanism of serotype 3 pneumococci, which are particularly resistant to phagocytosis. On their surfaces the bacteria express the factor H-binding inhibitor of complement (Hic), a protein of the pneumococcal surface protein C family. Using radioligand binding, microtiter plate assays, surface plasmon resonance analysis, and recombinant constructs of factor H, we located the binding site of Hic to short consensus repeats (SCRs) 8-11 in the middle part of factor H. This represents a novel microbial interaction region on factor H. The only other ligand known so far for SCRs 8-11 of factor H is C-reactive protein (CRP), an acute phase protein that binds to the pneumococcal C-polysaccharide. The binding sites of Hic and CRP within the SCR8-11 region were different, however, because CRP did not inhibit the binding of Hic and required calcium for binding. Binding of factor H to Hic-expressing pneumococci promoted factor I-mediated cleavage of C3b and restricted phagocytosis of pneumococci. Thus, virulent pneumococci avoid complement attack and opsonophagocytosis by recruiting functionally active factor H with the Hic surface protein. Hic binds to a previously unrecognized microbial interaction site in the middle part of factor H.  相似文献   

14.
The alternative pathway of C activation is Ag-independent and forms a first line of defense against infection before immune response. The C3 convertase, C3bBb, formed during activation of the alternative pathway is tightly regulated, with destabilization produced by factor H. Using metabolic labeling with [35S]methionine, immunoprecipitation, and SDS-PAGE, we demonstrated that human skin fibroblasts synthesized and secreted factor H protein. Two forms of the protein were identified, the approximately 160-kDa form seen more prominently in serum and a 45-kDa form that has also been identified in serum. The cells contained two forms of factor H mRNA, 4.4 and 1.8 kb. IFN-gamma increased factor H protein synthesis and mRNA content. No effect was observed with LPS. Neither HepG2 cells or human peripheral blood monocytes synthesized factor H protein or contained factor H mRNA.  相似文献   

15.
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.  相似文献   

16.
Factor H, a control protein of the human complement system, is closely related in functional activity to two other complement control proteins, C4b-binding protein (C4bp) and complement receptor type 1 (CR1). C4bp is known to have an unusual primary structure consisting of eight homologous units each about 60 amino acids long. Such units also occur in the N-terminal regions of the complement proteins C2 and factor B, and in the non-complement serum glycoprotein 2I. Amino acid sequencing, and sequencing of a factor H cDNA clone, show that factor H also contains internal repeating units, and is homologous to the proteins listed above.  相似文献   

17.
Streptococcus pneumoniae is a common cause of septicemia in the immunocompetent host. To establish infection, S. pneumoniae has to overcome host innate immune responses, one component of which is the complement system. Using isogenic bacterial mutant strains and complement-deficient immune naive mice, we show that the S. pneumoniae virulence factor pneumolysin prevents complement deposition on S. pneumoniae, mainly through effects on the classical pathway. In addition, using a double pspA-/ply- mutant strain we demonstrate that pneumolysin and the S. pneumoniae surface protein PspA act in concert to affect both classical and alternative complement pathway activity. As a result, the virulence of the pspA-/ply- strain in models of both systemic and pulmonary infection is greatly attenuated in wild-type mice but not complement deficient mice. The sensitivity of the pspA-/ply- strain to complement was exploited to demonstrate that although early innate immunity to S. pneumoniae during pulmonary infection is partially complement-dependent, the main effect of complement is to prevent spread of S. pneumoniae from the lungs to the blood. These data suggest that inhibition of complement deposition on S. pneumoniae by pneumolysin and PspA is essential for S. pneumoniae to successfully cause septicemia. Targeting mechanisms of complement inhibition could be an effective therapeutic strategy for patients with septicemia due to S. pneumoniae or other bacterial pathogens.  相似文献   

18.
19.
20.
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium:solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号