首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant.  相似文献   

3.
Ca(2+) release-activated Ca(2+) (CRAC) channels, located in the plasma membrane, are opened upon release of Ca(2+) from intracellular stores, permitting Ca(2+) entry and sustained [Ca(2+)](i) signaling that replenishes the store in numerous cell types. This mechanism is particularly important in T lymphocytes of the immune system, providing the missing link in the signal transduction cascade that is initiated by T cell receptor engagement and leads to altered expression of genes that results ultimately in the production of cytokines and cell proliferation. In the past three years, RNA interference screens together with over-expression and site-directed mutagenesis have identified the triggering molecule (Stim) that links store depletion to CRAC channel-mediated Ca(2+) influx and the pore subunit (Orai) of the CRAC channel that allows highly selective entry of Ca(2+) ions into cells.  相似文献   

4.
Although Ca(2+)-signaling processes are thought to underlie many dendritic cell (DC) functions, the Ca(2+) entry pathways are unknown. Therefore, we investigated Ca(2+)-signaling in mouse myeloid DC using Ca(2+) imaging and electrophysiological techniques. Neither Ca(2+) currents nor changes in intracellular Ca(2+) were detected following membrane depolarization, ruling out the presence of functional voltage-dependent Ca(2+) channels. ATP, a purinergic receptor ligand, and 1-4 dihydropyridines, previously suggested to activate a plasma membrane Ca(2+) channel in human myeloid DC, both elicited Ca(2+) rises in murine DC. However, in this study these responses were found to be due to mobilization from intracellular stores rather than by Ca(2+) entry. In contrast, Ca(2+) influx was activated by depletion of intracellular Ca(2+) stores with thapsigargin, or inositol trisphosphate. This Ca(2+) influx was enhanced by membrane hyperpolarization, inhibited by SKF 96365, and exhibited a cation permeability similar to the Ca(2+) release-activated Ca(2+) channel (CRAC) found in T lymphocytes. Furthermore, ATP, a putative DC chemotactic and maturation factor, induced a delayed Ca(2+) entry with a voltage dependence similar to CRAC. Moreover, the level of phenotypic DC maturation was correlated with the extracellular Ca(2+) concentration and enhanced by thapsigargin treatment. These results suggest that CRAC is a major pathway for Ca(2+) entry in mouse myeloid DC and support the proposal that CRAC participates in DC maturation and migration.  相似文献   

5.
6.
In this work we have combined biochemical and electrophysiological approaches to explore the modulation of rat ventricular transient outward K(+) current (I(to)) by calmodulin kinase II (CaMKII). Intracellular application of CaMKII inhibitors KN93, calmidazolium, and autocamtide-2-related inhibitory peptide II (ARIP-II) accelerated the inactivation of I(to), even at low [Ca(2+)]. In the same conditions, CaMKII coimmunoprecipitated with Kv4.3 channels, suggesting that phosphorylation of Kv4.3 channels modulate inactivation of I(to). Because channels underlying I(to) are heteromultimers of Kv4.2 and Kv4.3, we have explored the effect of CaMKII on human embryonic kidney (HEK) cells transfected with either of those Kvalpha-subunits. Whereas Kv4.3 inactivated faster upon inhibition of CaMKII, Kv4.2 inactivation was insensitive to CaMKII inhibitors. However, Kv4.2 inactivation became slower when high Ca(2+) was used in the pipette or when intracellular [Ca(2+)] ([Ca(2+)](i)) was transiently increased. This effect was inhibited by KN93, and Western blot analysis demonstrated Ca(2+)-dependent phosphorylation of Kv4.2 channels. On the contrary, CaMKII coimmunoprecipitated with Kv4.3 channels without a previous Ca(2+) increase, and the association was inhibited by KN93. These results suggest that both channels underlying I(to) are substrates of CaMKII, although with different sensitivities; Kv4.2 remain unphosphorylated unless [Ca(2+)](i) increases, whereas Kv4.3 are phosphorylated at rest. In addition to the functional impact that phosphorylation of Kv4 channels could cause on the shape of action potential, association of CaMKII with Kv4.3 provides a new role of Kv4.3 subunits as molecular scaffolds for concentrating CaMKII in the membrane, allowing Ca(2+)-dependent modulation by this enzyme of the associated Kv4.2 channels.  相似文献   

7.
The Ca(2+) release-activated Ca(2+) (CRAC) channel is the most well documented of the store-operated ion channels that are widely expressed and are involved in many important biological processes. However, the regulation of the CRAC channel by intracellular or extracellular messengers as well as its molecular identity is largely unknown. Specifically, in the absence of extracellular divalent cations it becomes permeable to monovalent cations with a larger conductance, however this monovalent cation current inactivates rapidly by an unknown mechanism. Here we found that Ca(2+) dissociation from a site on the extracellular side of the CRAC channel is responsible for the inactivation of its Na(+) current, and Ca(2+) occupancy of this site otherwise potentiates its Ca(2+) as well as Na(+) currents. This Ca(2+)-dependent potentiation is required for the normal functioning of CRAC channels.  相似文献   

8.
Store-operated channels (SOC) are Ca(2+)-permeable channels that are activated by IP(3)-receptor-mediated Ca(2+) depletion of the endoplasmic reticulum (ER). Recent studies identify a membrane pore subunits, Orai1 and a Ca(2+) sensor on ER, STIM1 as components of Ca(2+) release-activated Ca(2+) (CRAC) channels, which are well-characterized SOCs. On the other hand, proteins that act as modulators of SOC activity remain to be identified. Calumin is a Ca(2+)-binding protein that resides on the ER and functional experiments using calumin-null mice demonstrate that it is involved in SOC function, although its role is unknown. This study used electrophysiological analysis to explore whether calumin modulates CRAC channel activity. CRAC channel currents were absent in HEK293 cells co-expressing calumin with the CRAC channel components, Orai1 or STIM1. Meanwhile, HEK cells that co-expressed calumin with CRAC channels exhibited larger currents with slower inactivation than cells expressing CRAC channels alone. The current-voltage relationship showed an inwardly rectifying current, but a negative shift in the reversal potential of greater than 60mV was observed in HEK cells co-expressing calumin with CRAC channels. In addition, the permeability coefficient ratio of Ca(2+) over monovalent cations was much lower than that of cells expressing CRAC channels alone. Replacement of Na(+) with N-methyl-d-glucamine(+) in the external solution noticeably diminished the CRAC current in HEK cells co-expressing calumin and CRAC channels. In a Cs(+)-based external solution, CRAC current was not observed in either cell-type. In addition, Ca(2+) imaging analysis revealed that co-transfection of calumin reduced extracellular Ca(2+) influx via CRAC channels. Further, calumin was shown to be directly associated with CRAC channels. These results reveal a novel mechanism for the regulation of CRAC channels by calumin.  相似文献   

9.
Agonist-receptor interactions at the plasma membrane often lead to activation of store-operated channels (SOCs) in the plasma membrane, allowing for sustained Ca(2+) influx. While Ca(2+) influx is important for many biological processes, little is known about the types of SOCs, the nature of the depletion signal, or how the SOCs are activated. We recently showed that in addition to the Ca(2+) release-activated Ca(2+) (CRAC) channel, both Jurkat T cells and human peripheral blood mononuclear cells express novel store-operated nonselective cation channels that we termed Ca(2+) release-activated nonselective cation (CRANC) channels. Here we demonstrate that activation of both CRAC and CRANC channels is accelerated by a soluble Ca(2+) influx factor (CIF). In addition, CRANC channels in inside-out plasma membrane patches are directly activated upon exposure of their cytoplasmic side to highly purified CIF preparations. Furthermore, CRANC channels are also directly activated by diacylglycerol. These results strongly suggest that the Ca(2+) store-depletion signal is a diffusible molecule and that at least some SOCs may have dual activation mechanisms.  相似文献   

10.
Antigen-evoked influx of extracellular Ca(2+) into mast cells may occur via store-operated Ca(2+) channels called calcium release-activated calcium (CRAC) channels. In mast cells of the rat basophilic leukemia cell line (RBL-2H3), cholera toxin (CT) potentiates antigen-driven uptake of (45)Ca(2+) through cAMP-independent means. Here, we have used perforated patch clamp recording at physiological temperature to test whether cholera toxin or its substrate, Gs, directly modulates the activity of CRAC channels. Cholera toxin dramatically amplified (two- to fourfold) the Ca(2)+ release-activated Ca(2+) current (I(CRAC)) elicited by suboptimal concentrations of antigen, without itself inducing I(CRAC), and this enhancement was not mimicked by cAMP elevation. In contrast, cholera toxin did not affect the induction of I(CRAC) by thapsigargin, an inhibitor of organelle Ca(2+) pumps, or by intracellular dialysis with low Ca(2+) pipette solutions. Thus, the activity of CRAC channels is not directly controlled by cholera toxin or Gsalpha. Nor was the potentiation of I(CRAC) due to enhancement of phosphoinositide hydrolysis or calcium release. Because Gs and the A subunit of cholera toxin bind to ADP ribosylation factor (ARF) and could modulate its activity, we tested the sensitivity of antigen-evoked I(CRAC) to brefeldin A, an inhibitor of ARF-dependent functions, including vesicle transport. Brefeldin A blocked the enhancement of antigen-evoked I(CRAC) without inhibiting ADP ribosylation of Gsalpha, but it did not affect I(CRAC) induced by suboptimal antigen or by thapsigargin. These data provide new evidence that CRAC channels are a major route for Fcin receptor I-triggered Ca(2+) influx, and they suggest that ARF may modulate the induction of I(CRAC) by antigen.  相似文献   

11.
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.  相似文献   

12.
Using a combination of fluorescence measurements of intracellular Ca(2+) ion concentration ([Ca(2+)](i)) and membrane potential we have investigated the sensitivity to serine/threonine phosphatase inhibition of Ca(2+) entry stimulated by activation of the Ca(2+) release-activated Ca(2+) (CRAC) entry pathway in rat basophilic leukemia cells. In both suspension and adherent cells, addition of the type 1/2A phosphatase inhibitor calyculin A, during activation of CRAC uptake, resulted in a fall in [Ca(2+)](i) to near preactivation levels. Pre-treatment with calyculin A abolished the component of the Ca(2+) rise associated with activation of CRAC uptake and inhibited Mn(2+) entry, consistent with a requirement of phosphatase activity for activation of the pathway. Depletion of intracellular Ca(2+) stores is accompanied by a large depolarisation which is absolutely dependent upon Ca(2+) entry via the CRAC uptake pathway. Application of calyculin A or okadaic acid, a structurally unrelated phosphatase antagonist inhibits this depolarisation. Taken in concert, these data demonstrate a marked sensitivity of the CRAC entry pathway to inhibition by calyculin A and okadaic acid.  相似文献   

13.
Parekh AB 《Cell calcium》2008,44(1):6-13
In eukaryotic cells, one major route for Ca(2+) influx is through store-operated CRAC channels, which are activated following a fall in Ca(2+) content within the endoplasmic reticulum. Mitochondria are key regulators of this ubiquitous Ca(2+) influx pathway. Respiring mitochondria rapidly take up some of the Ca(2+) released from the stores, resulting in more extensive store depletion and thus robust activation of CRAC channels. As CRAC channels open, the ensuing rise in cytoplasmic Ca(2+) feeds back to inactivate the channels. By buffering some of the incoming Ca(2+) mitochondria reduce Ca(2+)-dependent inactivation of the CRAC channels, resulting in more prolonged Ca(2+) influx. However, mitochondria can release Ca(2+) close to the endoplasmic reticulum, accelerating store refilling and thus promoting deactivation of the CRAC channels. Mitochondria thus regulate all major transitions in CRAC channel gating, revealing remarkable versatility in how this organelle impacts upon Ca(2+) influx. Recent evidence suggests that mitochondria also control CRAC channels through mechanisms that are independent of their Ca(2+)-buffering actions and ability to generate ATP. Furthermore, pyruvic acid, a key intermediary metabolite and precursor substrate for the Krebs cycle, reduces the extent of Ca(2+)-dependent inactivation of CRAC channels. Hence mitochondrial metabolism impacts upon Ca(2+) influx through CRAC channels and thus on a range of key downstream cellular responses.  相似文献   

14.
15.
Loss of the mitochondrial membrane potential results in a significant inhibition of calcium influx through calcium release-activated channels (CRAC) in Jurkat cells suspended in the medium of pH lower than 7.4. This effect disappears when the medium pH increases. Alkalinisation of the cytosol achieved by the addition of NH(4)Cl to the cells pretreated with thapsigargin, CCCP and CaCl(2), suspended in the medium of pH 7.2, does not affect CRAC activity, while alkalisation of the extracellular milieu by NaOH results in a strong stimulation of calcium entry. Thus, the mitochondrial effect on CRAC is exclusively related to the extracellular pH.Coupled mitochondria are able to take up Ca(2+) accumulated in the close proximity of CRAC. This protects these channels against feedback inhibition exerted by high [Ca(2+)](c). We conclude that CRAC may exist in two conformations: inhibitable and not inhibitable by cytosolic Ca(2+). Lower extracellular pH promotes the former one. This explains a much higher inhibitory effect of mitochondrial uncouplers on the calcium influx into the cells exposed to pH 7.2 than that observed in the cells suspended in the medium of pH 7.8. This phenomenon may provide an additional mechanism protecting cells against calcium overloading in transient episodes of energy stress.  相似文献   

16.
In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca(2+) release-activated Ca(2+) (CRAC) channels open in response to passive Ca(2+) store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg(2+) exposes an outwardly rectifying current (Mg(2+)-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg(2+), spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg(2+). Removal of internal Mg(2+) induced MIC current despite widely varying Ca(2+) and EGTA levels, suggesting that Ca(2+)-store depletion is not involved in activation of MIC channels. Increasing internal Mg(2+) from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg(2+) and Cs(+) carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg(2+) blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.  相似文献   

17.
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)](i) transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH.  相似文献   

18.
Although the crucial role of Ca(2+) influx in lymphocyte activation has been well documented, little is known about the properties or expression levels of Ca(2+) channels in normal human T lymphocytes. The use of Na(+) as the permeant ion in divalent-free solution permitted Ca(2+) release-activated Ca(2+) (CRAC) channel activation, kinetic properties, and functional expression levels to be investigated with single channel resolution in resting and phytohemagglutinin (PHA)-activated human T cells. Passive Ca(2+) store depletion resulted in the opening of 41-pS CRAC channels characterized by high open probabilities, voltage-dependent block by extracellular Ca(2+) in the micromolar range, selective Ca(2+) permeation in the millimolar range, and inactivation that depended upon intracellular Mg(2+) ions. The number of CRAC channels per cell increased greatly from approximately 15 in resting T cells to approximately 140 in activated T cells. Treatment with the phorbol ester PMA also increased CRAC channel expression to approximately 60 channels per cell, whereas the immunosuppressive drug cyclosporin A (1 microM) suppressed the PHA-induced increase in functional channel expression. Capacitative Ca(2+) influx induced by thapsigargin was also significantly enhanced in activated T cells. We conclude that a surprisingly low number of CRAC channels are sufficient to mediate Ca(2+) influx in human resting T cells, and that the expression of CRAC channels increases approximately 10-fold during activation, resulting in enhanced Ca(2+) signaling.  相似文献   

19.
Sustained Ca(2+) influx through plasma membrane Ca(2+) released-activated Ca(2+) (CRAC) channels is essential for T cell activation. Since inflowing Ca(2+) inactivates CRAC channels, T cell activation is only possible if Ca(2+)-dependent inactivation is prevented. We have previously reported that sustained Ca(2+) influx through CRAC channels requires both mitochondrial Ca(2+) uptake and mitochondrial translocation towards the plasma membrane in order to prevent Ca(2+)-dependent channel inactivation. Here, we show that morphological changes following formation of the immunological synapse (IS) modulate Ca(2+) influx through CRAC channels. Cell shape changes were dependent on the actin cytoskeleton, and they sustained Ca(2+) entry by bringing mitochondria and the plasma membrane in closer proximity. The increased percentage of mitochondria beneath the plasma membrane following shape changes occurred in all 3 dimensions and correlated with an increase in the amplitude of Ca(2+) signals. The shape change-dependent mitochondrial localization close to the plasma membrane prevented CRAC channel inactivation even in T cells in which dynein motor protein-dependent mitochondria movements towards the plasma membrane were completely abolished, highlighting the importance of the shape change-dependent control of Ca(2+) influx. Our results suggest that morphological changes do not only facilitate an efficient contact with antigen presenting cells but also strongly modulate Ca(2+) dependent T cell activation.  相似文献   

20.
In most nonexcitable cells, calcium (Ca(2+)) release from inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx (calcium release-activated channels (I(CRAC))) pathway. Despite intense investigation, the molecular identity of I(CRAC) and the mechanism of its activation remain poorly understood. InsP(3)-dependent miniature calcium channels (I(min)) display functional properties characteristic for I(CRAC). Here we used patch clamp recordings of I(min) channels in human carcinoma A431 cells to demonstrate that I(min) activity was greatly enchanced in the presence of anti-phosphatidylinositol 4, 5-bisphosphate antibody (PIP(2)Ab) and diminished in the presence of PIP(2). Anti-PIP(2) antibody induced a greater than 6-fold increase in I(min) sensitivity for InsP(3) activation and an almost 4-fold change in I(min) maximal open probability. The addition of exogenous PIP(2) vesicles to the cytosolic surface of inside-out patches inhibited I(min) activity. These results lead us to propose an existence of a Ca(2+) influx pathway in nonexcitable cells activated via direct conformational coupling with a selected population of InsP(3) receptors, located just underneath the plasma membrane and coupled to PIP(2). The described pathway provides for a highly compartmentalized Ca(2+) influx and intracellular Ca(2+) store refilling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号