首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. We sequenced the small subunit (SSU) rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes of two trypanosomes isolated from the Brazilian snakes Pseudoboa nigra and Crotalus durissus terrificus . Trypanosomes were cultured and their morphometrical and ultrastructural features were characterized by light microscopy and scanning and transmission electron microscopy. Phylogenetic trees inferred using independent or combined SSU rRNA and gGAPDH data sets always clustered the snake trypanosomes together in a clade closest to lizard trypanosomes, forming a strongly supported monophyletic assemblage (i.e. lizard–snake clade). The positioning in the phylogenetic trees and the barcoding based on the variable V7–V8 region of the SSU rRNA, which showed high sequence divergences, allowed us to classify the isolates from distinct snake species as separate species. The isolate from P. nigra is described as a new species, Trypanosoma serpentis n. sp., whereas the isolate from C. d. terrificus is redescribed here as Trypanosoma cascavelli .  相似文献   

2.
Neotropical primates of the Cebidae and Callitrichidae, in their natural habitats, are frequently infected with a variety of trypanosomes including Trypanosoma cruzi, which causes a serious zoonosis, Chagas' disease. The state of trypanosome infection after a 30-day quarantine period was assessed in 85 squirrel monkeys (Saimiri sciureus) and 15 red-handed tamarins (Saguinus midas), that were wild-caught and exported to Japan as companion animals or laboratory animals, for biomedical research, respectively. In addition to many microfilariae of Mansonella (Tetrapetalonema) mariae at a prevalence of 25.9%, and Dipetalonema caudispina at a prevalence of 3.5%, a few trypomastigotes of Trypanosoma (Megatrypanum) minasense were detected in Giemsa-stained thin films of blood from 20 squirrel monkeys at a prevalence of 23.5%. Although few T. minasense trypomastigotes were found in Giemsa-stained blood films from tamarins, a buffy-coat examination detected trypanosomes in 12 red-handed tamarins (80.0%), and PCR amplification of a highly variable region of the small subunit ribosomal RNA genes (SSU rDNA) for Trypanosoma spp. detected the infection in 14 of the 15 tamarins (93.3%). Nucleotide sequences of the amplicons were identical for trypanosomes from tamarins and squirrel monkeys, indicating a high prevalence but low parasitemia of T. minasense in imported Neotropical nonhuman primates. Based on the SSU rDNA and 5.8S rDNA, the molecular phylogenetic characterization of T. minasense indicated that T. minasense is closely related to trypanosomes with Trypanosoma theileri-like morphology and is distinct from Trypanosoma (Tejeraia) rangeli, as well as from T. cruzi. Using some blood samples from these monkeys, amplification and subsequent sequencing of the glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene fragments detected 4 trypanosome genotypes, including 2 types of T. cruzi clade, 1 type of T. rangeli clade, and 1 T. rangeli-related type, but failed to indicate its phylogenetic position based on the gGAPDH gene. Furthermore, species ordinarily classified in the Megatrypanum by morphological criteria do not form a clade in any molecular phylogenetic trees based on rDNA or gGAPDH genes.  相似文献   

3.
Presence of Salmonella spp. was evaluated in yacare caiman (Caiman yacare) and broad-snouted caiman (Caiman latirostris) from a ranching facility in the Argentine Chaco. Crocodilian ranching programs are based on captive breeding of wild-harvested eggs and release of excess hatchlings into the wild. Samples for bacterial isolation were collected from 102 captive (35 C. yacare and 67 C. latirostris) and seven free-ranging caiman (four C. yacare and three C. latirositris) between 2001 and 2005 and from three artificially incubated C. yacare wild eggs. Two Salmonella spp. of known zoonotic potential, S. infantis and S. nottingham, were isolated from captive caiman in 2001 and 2002, respectively. This is the first report for S. nottingham in reptiles and of S. infantis in caiman. Salmonella spp. prevalence varied significantly between years, with a 77% prevalence peak in 2002. Although the cause of this increase was not confirmed, we found no correlation with the type of enclosure, caiman species, or body weight. Deteriorated physical condition of caiman hatchlings due to dietary changes in 2002 could have influenced Salmonella spp. shedding. However, external sources such as food, water, or enclosures could not be ruled out. Pathogenic Salmonella spp. present a risk for human infection. Inadvertent introduction of Salmonella spp. or other bacteria into the environment when caiman are released could pose a threat to wild caiman populations. Prophylactic measures to detect and decrease Salmonella spp. presence in caiman ranching facilities are recommended to reduce risk to humans and make caiman-ranching a sound conservation strategy for crocodilian species.  相似文献   

4.
ABSTRACT. Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01‐04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.  相似文献   

5.
The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories.  相似文献   

6.
In this study, we addressed the phylogenetic and taxonomic relationships of Trypanosoma vivax and related trypanosomes nested in the subgenus Duttonella through combined morphological and phylogeographical analyses. We previously demonstrated that the clade T. vivax harbours a homogeneous clade comprising West African/South American isolates and the heterogeneous East African isolates. Herein we characterized a trypanosome isolated from a nyala antelope (Tragelaphus angasi) wild-caught in Mozambique (East Africa) and diagnosed as T. vivax-like based on biological, morphological and molecular data. Phylogenetic relationships, phylogeographical patterns and estimates of genetic divergence were based on SSU and ITS rDNA sequences of T. vivax from Brazil and Venezuela (South America), Nigeria (West Africa), and from T. vivax-like trypanosomes from Mozambique, Kenya and Tanzania (East Africa). Despite being well-supported within the T. vivax clade, the nyala trypanosome was highly divergent from all other T. vivax and T. vivax-like trypanosomes, even those from East Africa. Considering its host origin, morphological features, behaviour in experimentally infected goats, phylogenetic placement, and genetic divergence this isolate represents a new genotype of trypanosome closely phylogenetically related to T. vivax. This study corroborated the high complexity and the existence of distinct genotypes yet undescribed within the subgenus Duttonella.  相似文献   

7.
We analyzed DNA sequences of the mitochondrial cytochrome b gene (cyt b), the nuclear Recombination Activating Gene 1 (RAG1) and the myelocytomatosis oncogene (MYC) to infer the phylogenetic relationship of Caiman crocodilus and Caiman yacare, and other South American alligatorid crocodilian species. Phylogenetic relationships were robustly supported with Paleosuchus sister to Melanosuchus and Caiman. Phylogenetic relationships of C. crocodilus and C. yacare were unclear as these two species share mitochondrial and nuclear haplotypes. Specifically this sharing occurs among specimens of C. yacare and C. crocodilus from the Madeira River drainage. Two potential explanations stand out: secondary contact followed by hybridization, and differentiation along a cline. Current data cannot resolve between these two competing hypotheses. In comparison with C. yacare and C. crocodilus, Paleosuchus trigonatus and Paleosuchus palpebrosus are very well differentiated and also show surprising haplotypic diversity in spite of their phenotypic similarity.  相似文献   

8.
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.  相似文献   

9.
Little is known about the trypanosomes of indigenous Australian vertebrates and their vectors. We surveyed a range of vertebrates and blood-feeding invertebrates for trypanosomes by parasitological and PCR-based methods using primers specific to the small subunit ribosomal RNA (SSU rRNA) gene of genus Trypanosoma. Trypanosome isolates were obtained in culture from two common wombats, one swamp wallaby and an Australian bird (Strepera sp.). By PCR, blood samples from three wombats, one brush-tailed wallaby, three platypuses and a frog were positive for trypanosome DNA. All the blood-sucking invertebrates screened were negative for trypanosomes both by microscopy and PCR, except for specimens of terrestrial leeches (Haemadipsidae). Of the latter, two Micobdella sp. specimens from Victoria and 18 Philaemon sp. specimens from Queensland were positive by PCR. Four Haemadipsa zeylanica specimens from Sri Lanka and three Leiobdella jawarerensis specimens from Papua New Guinea were also PCR positive for trypanosome DNA. We sequenced the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes in order to determine the phylogenetic positions of the new vertebrate and terrestrial leech trypanosomes. In trees based on these genes, Australian vertebrate trypanosomes fell in several distinct clades, for the most part being more closely related to trypanosomes outside Australia than to each other. Two previously undescribed wallaby trypanosomes fell in a clade with Trypanosoma theileri, the cosmopolitan bovid trypanosome, and Trypanosoma cyclops from a Malaysian primate. The terrestrial leech trypanosomes were closely related to the wallaby trypanosomes, T. cyclops and a trypanosome from an Australian frog. We suggest that haemadipsid leeches may be significant and widespread vectors of trypanosomes in Australia and Asia.  相似文献   

10.
Free-living amoebae of the genus Acanthamoeba are the agents of both opportunistic and non-opportunistic infections and are frequently isolated from the environment. Of the 17 genotypes (T1-T17) identified thus far, 4 (T7, T8, T9, and T17) accommodate the rarely investigated species of morphological group I, those that form large, star-shaped cysts. We report the isolation and characterization of 7 new Brazilian environmental Acanthamoeba isolates, all assigned to group I. Phylogenetic analyses based on partial (~1200 bp) SSU rRNA gene sequences placed the new isolates in the robustly supported clade composed of the species of morphological group I. One of the Brazilian isolates is closely related to A. comandoni (genotype T9), while the other 6, together with 2 isolates recently assigned to genotype T17, form a homogeneous, well-supported group (2·0% sequence divergence) that likely represents a new Acanthamoeba species. Thermotolerance, osmotolerance, and cytophatic effects, features often associated with pathogenic potential, were also examined. The results indicated that all 7 Brazilian isolates grow at temperatures up to 40°C, and resist under hyperosmotic conditions. Additionally, media conditioned by each of the new Acanthamoeba isolates induced the disruption of SIRC and HeLa cell monolayers.  相似文献   

11.
Species of the subgenus Trypanosoma (Megatrypanum) have been reported in cattle and other domestic and wild ruminants worldwide. A previous study in Brazil found at least four genotypes infecting cattle (Bos taurus), but only one in water buffalo (Bubalus bubalis). However, the small number of isolates examined from buffalo, all inhabiting nearby areas, has precluded evaluation of their diversity, host associations and geographical structure. To address these questions, we evaluated the genetic diversity and phylogeographical patterns of 25 isolates from water buffalo and 28 from cattle from four separate locations in Brazil and Venezuela. Multigene phylogenetic analyses of ssrRNA, internal transcribed spacer of rDNA (ITSrDNA), 5SrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH), mitochondrial cytochrome b (Cyt b), spliced leader (SL) and cathepsin L-like (CATL) sequences positioned all isolates from sympatric and allopatric buffalo populations into the highly homogeneous genotype TthIA, while the cattle isolates were assigned to three different genotypes, all distinct from TthIA. Polymorphisms in all of these sequences separated the trypanosomes infecting water buffalo, cattle, sheep, antelope and deer, and suggested that they correspond to separate species. Congruent phylogenies inferred with all genes indicated a predominant clonal structure of the genotypes. The multilocus analysis revealed one monophyletic assemblage formed exclusively by trypanosomes of ruminants, which corresponds to the subgenus T. (Megatrypanum). The high degree of host specificity, evidenced by genotypes exclusive to each ruminant species and lack of genotype shared by different host species, suggested that the evolutionary history of trypanosomes of this subgenus was strongly constrained by their ruminant hosts. However, incongruence between ruminant and trypanosome phylogenies did not support host-parasite co-evolution, indicating that host switches have occurred across ruminants followed by divergences, giving rise to new trypanosome genotypes adapted exclusively to one host species.  相似文献   

12.
Wild rabbits (Oryctolagus cuniculus) in Australia are the descendents of 24 animals from England released in 1859. We surveyed rabbits and rabbit fleas (Spilopsyllus cuniculi) in Australia for the presence of trypanosomes using parasitological and PCR-based methods. Trypanosomes were detected in blood from the European rabbits by microscopy, and PCR using trypanosome-specific small subunit ribosomal RNA (SSU rRNA) gene primers and those in rabbit fleas by PCR. This is the first record of trypanosomes from rabbits in Australia. We identified these Australian rabbit trypanosomes as Trypanosoma nabiasi, the trypanosome of the European rabbit, by comparison of morphology and SSU rRNA gene sequences of Australian and European rabbit trypanosomes. Phylogenetic analysis places T. nabiasi in a clade with rodent trypanosomes in the subgenus Herpetosoma and their common link appears to be transmission by fleas. Despite the strict host specificity of trypanosomes in this clade, phylogenies presented here suggest that they have not strictly cospeciated with their vertebrate hosts. We suggest that T. nabiasi was inadvertently introduced into Australia in the 1960s in its flea vector Spilopsyllus cuniculi, which was deliberately introduced as a potential vector of the myxoma virus. In view of the environmental and economic damage caused by rabbits in Australia and other islands, the development of a virulent or genetically modified T. nabiasi should be considered to control rabbits.  相似文献   

13.
Trypanosomes (genus Trypanosoma) are widespread blood parasites of vertebrates, usually transmitted by arthropod or leech vectors. Most trypanosomes have lifecycles that alternate between a vertebrate host, where they exist in the bloodstream, and an invertebrate host, where they develop in the alimentary tract. This raises the question of whether one type of host has had greater influence on the evolution of the genus. Working from the generally accepted view that trypanosomes are monophyletic, here we examine relationships between trypanosomes using phylogenies based on the genes for the small subunit ribosomal RNA (SSU rRNA) and the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH). New analysis of a combined dataset of both these genes provides strong support for many known clades of trypanosomes. It also resolves the deepest split within the genus between the Aquatic clade, which mainly contains trypanosomes of aquatic and amphibious vertebrates, and a clade of trypanosomes from terrestrial vertebrates. There is also strengthened support for two deep clades, one comprising a wide selection of mammalian trypanosomes and a tsetse fly-transmitted reptilian trypanosome, and the other combining two bird trypanosome subclades. Considering the vertebrate and invertebrate hosts of each clade, it is apparent that co-speciation played little role in trypanosome evolution. However most clades are associated with a type of vertebrate or invertebrate host, or both, indicating that 'host fitting' has been the principal mechanism for evolution of trypanosomes.  相似文献   

14.
Skovgaard A  Daugbjerg N 《Protist》2008,159(3):401-413
Paradinium and Paradinium-like parasites were detected in various copepod hosts collected in the NW Mediterranean Sea, the North Atlantic Ocean, and the Godth?bsfjord (Greenland). The identity and systematic position of the parasitic, plasmodial protist Paradinium was investigated on the basis of SSU rDNA and morphology. SSU rDNA sequences were obtained from 3 specimens of Paradinium poucheti isolated from their cyclopoid copepod host, Oithona similis. In addition, a comparable sequence was obtained from a hitherto undescribed species of Paradinium from the harpactacoid copepod Euterpina acutifrons. Finally, SSU rDNA sequences were acquired from 2 specimens of a red plasmodial parasite (RP parasite) isolated from Clausocalanus sp. Both morphological and SSU rDNA sequence data supported that P. poucheti and Paradinium sp. are closely related organisms. In phylogenetic analyses based on SSU rDNA sequences, Paradinium spp. clustered with sequences from an uncultured eukaryote clone from the Pacific Ocean and two sequences from haplosporidian-like parasites of shrimps, Pandalus spp. This Paradinium clade branched as a sister group to a clade comprising the Haplosporidia and the Foraminifera. The RP parasite had a superficial morphological resemblance to Paradinium and has previously been interpreted as a member of this genus. However, several morphological characters contradict this and SSU rDNA sequence data disagree with the RP parasite and Paradinium being related. The phylogenetic analyses suggested that the RP parasite is a fast-evolved alveolate and a member of the so-called marine alveolate Group I (MAGI) and emerging data now suggest that this enigmatic group may, like the syndinian dinoflagellates, consist of heterotrophic parasites.  相似文献   

15.
We report complete mitochondrial genomic sequences for Crocodylus acutus and Crocodylus novaeguineae, whose gene orders match those of other crocodilians. Phylogenetic analyses based on the sequences of 12 mitochondrial protein-coding genes support monophyly of two crocodilian taxonomic families, Alligatoridae (genera Alligator, Caiman, and Paleosuchus) and Crocodylidae (genera Crocodylus, Gavialis, Mecistops, Osteolaemus, and Tomistoma). Our results are consistent with monophyly of all crocodilian genera. Within Alligatoridae, genus Alligator is the sister taxon of a clade comprising Caiman and Paleosuchus. Within Crocodylidae, the basal phylogenetic split separates a clade comprising Gavialis and Tomistoma from a clade comprising Crocodylus, Mecistops, and Osteolaemus. Mecistops and Osteolaemus form the sister taxon to Crocodylus. Within Crocodylus, we sampled five Indopacific species, whose phylogenetic ordering is ((C. mindorensis, C. novaeguineae), (C. porosus, (C. siamensis, C. palustris))). The African species C. niloticus and New World species C. acutus form the sister taxon to the Indopacific species, although our sampling lacks three other New World species and an Australian species of Crocodylus.  相似文献   

16.
Crocodilians and other diving vertebrates experience hypoperfusion and hypoxia of several internal organs during long dives. At the end of a dive, reperfusion of aerated blood may cause a physiologically relevant oxidative stress. In this study, we analyzed selected markers of oxidative stress in eight organs of normoxic Paraguayan caiman (Caiman yacare) captured in the Brazilian Pantanal wetlands during the winter of 2001 (six mature-adult males and eight young-adult males; AD-1 and YA-1 groups, respectively), and during the summer of 2002 (six young-adult males (YA-2 group), ten hatchlings and five embryos). Lipid peroxidation products determined by three different assays were generally highest in brain, liver and kidney (in comparison with all other organs), and lowest in white muscles from the tail and hind legs. Liver and kidney showed the highest levels of carbonyl protein, while brain showed low levels. Intermediate levels of oxidative stress markers were mostly found in the heart ventricles and lung. Differences in oxidative stress markers between AD-1 and YA-1 were organ-specific, showing no age-related correlation. However, most oxidative stress markers in YA-2 organs were either higher than (by 1.4- to 3.7-fold) or not significantly different from respective values in hatchlings organs. This pattern (hatchlings versus young-adults) was confirmed using correlation analysis of individual caiman size versus levels of oxidative damage markers in four organs. The higher level of oxidative stress markers in young-adults possibly relates to the fast growth rate (and thus, increased oxidative metabolic rate) of C. yacare in the first years of life. Differences in oxidative stress markers between YA-1 and YA-2 were also observed and were ascribed to seasonal changes in free radical metabolism. These results in normoxic C. yacare represent the first step towards understanding the age-related physiological oxidative stress of a diving reptile from a seasonally changing wetland environment.  相似文献   

17.
Four isolates tentatively identified as Pseudaegerita matsushimae on the basis of the morphology of bulbil-like propagules were collected from substrates submerged in water in Thailand and Japan. In culture studies the two Thai isolates were found to produce phialoconidia on conidiogenous cells and phialoconidiophores whose morphology was similar to that of Trichoderma. Phylogenetic analysis based on D1/D2 regions of LSU rDNA sequences showed that the four isolates were nested in Hypocrea/Trichoderma (Hypocreales) while P. corticalis, the type species of Pseudaegerita, belongs to Hyaloscypha (Helotiales). Preliminary analysis by ISTH Web tools based on 5.8S-ITS rDNA and phylogenetic analysis based on rpb2 and tef1-int4 genes showed that the isolates have specific sequences of Trichoderma (anchors 1-5) and belong to the Hamatum clade but they grouped apart from any known species of Trichoderma. The sequences of the tef1-int4 gene, which were amplified from the authentic specimen of P. matsushimae (IMI 266915), also showed that it belongs to the Hamatum clade closely clustering with T. yunnanense but separate from our four isolates. The morphology of P. matsushimae (IMI 266915), especially the sizes of phialides and phialoconidia, were different from T. yunnanense. Thus, we conclude that IMI 266915 and our isolates are to be assigned to two different species in the Hamatum clade of Trichoderma, although both species have similar morphology of bulbils and phialoconidia. Morphology and molecular data revealed that P. matsushimae should be assigned to the genus Trichoderma as T. matsushimae and the Thai and Japanese isolates are placed in T. aeroaquaticum sp. nov. This finding supports the interpretation that aero-aquatic fungi have evolved from terrestrial fungi. We assume that these fungi probably were derived from typically soil-inhabiting species of Trichoderma; an adaptation to aquatic environments is shown by formation of bulbil-like propagules floating on water.  相似文献   

18.
Siderastrea stellata is a common scleractinian coral that inhabits shallow reefs off the coast of Brazil. This species is considered to be very resistant to temperature and salinity variations and water turbidity, demonstrating great ecological plasticity and adaptability to environmental changes. Samples of S. stellata were taken from the Cabo Branco coastal reefs near João Pessoa, Brazil, every month for two years and analyzed using PCR and Restriction Fragment Length Polymorphisms of SSU rDNA techniques. The data indicated that during the study period S. stellata hosted only one SSU rDNA genotype of Symbiodinium with the RFLP pattern of clade C. The presence of clade C zooxanthellae in S. stellata in northeastern Brazilian reefs shows the wide geographical distribution of this clade, and it may aid bleaching recovery in S. stellata. Furthermore, the association of S. stellata with a zooxanthellae clade considered to be one of most resistant to bleaching may help to explain the high ecological plasticity of this scleractinian species, its capacity to reverse bleaching, and its high resistance and resilience to environmental disturbances.  相似文献   

19.
In 1992, two independent reports based on small-subunit rRNA gene (SSU rDNA) cloning revealed the presence of novel Archaea among marine bacterioplankton. Here, we report the presence of further novel Archaea SSU rDNA sequences recovered from the midgut contents of a deep-sea marine holothurian. Phylogenetic analyses show that these abyssal Archaea are a paraphyletic component of a highly divergent clade that also includes some planktonic sequences. Our data confirm that this clade is a deep-branching lineage in the tree of life.  相似文献   

20.
To further investigate the phylogeny of protozoa from the order Kinetoplastida we have sequenced the small subunit (SSU) and a portion of the large subunit (LSU) nuclear rRNA genes. The SSU and LSU sequences were determined from a lizard trypanosome, Trypanosoma scelopori and a bodonid, Rhynchobodo sp., and the LSU sequences were determined from an insect trypanosomatid, Crithidia oncopelti, and a bodonid, Dimastigella trypaniformis. Contrary to previous results, in which trypanosomes were found to be paraphyletic, with Trypanosoma brucei representing the earliest-diverging lineage, we have now found evidence for the monophyly of trypanosomes. Addition of new taxa which subdivide long branches (such as that of T. brucei) have helped to identify homoplasies responsible for the paraphyletic trees in previous studies. Although the monophyly of the trypanosome clade is supported in the bootstrap analyses for maximum likelihood at 97% and maximum parsimony at 92%, there is only a small difference in ln-likelihood value or tree length between the most optimal monophyletic tree and the best suboptimal paraphyletic tree. Within the trypanosomatid subtree, the clade of trypanosomes is a sister group to the monophyletic clade of the nontrypanosome genera. Different groups of trypanosomes group on the tree according to their mode of transmission. This suggests that the adaptation to invertebrate vectors plays a more important role in the trypanosome evolution than the adaptation to vertebrate hosts. Received: 5 July 1996 / Accepted: 26 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号