首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligands for natural killer (NK) cell activating receptors can be released from tumor cells and are believed to promote tumor growth by acting as decoys for effector lymphocytes. In a recent paper published in Science, Deng et al. report another scenario in which a shed form of the MULT1 mouse NKG2D ligand boosts NK cell functions.Natural killer (NK) cells are cytolytic and cytokine-producing lymphocytes of the innate immune system that participate in the control of tumor growth and microbial infections1. NK cell effector activities are tightly controlled by a fine balance of inhibitory and activating signals delivered by surface receptors. Activating receptors can recognize two types of ligands, self-molecules encoded by the host''s own genome whose expression is upregulated upon cellular stress, or exogenous molecules produced by microbes during infection. NKG2D, one of the best characterized activating receptor expressed by NK and T cells, binds to several different ligands in human and mouse2. NKG2D ligands are poorly expressed on the vast majority of normal cell surfaces, but are upregulated on tumor and virus-infected cells. In addition, NKG2D ligands can be released by both surface cleavage and exosome excretion. It has been reported that shed ligands can block tumor cell recognition by effector cells by preventing NKG2D interaction with its ligands3. However, several reports do not correlate the presence of soluble ligands with decreased NKG2D expression nor functional activities.Deng et al.4 focused their analysis on the NKG2D mouse ligand MULT1, which is commonly overexpressed on primary tumor cells. They first showed that MULT1-transduced fibroblast can cleave MULT1 from the plasma membrane, resulting in a released shed form in the supernatant. Shed MULT1 is of high affinity to NKG2D (∼13 nM) similar to recombinant MULT1. They further reveal the presence of shed MULT1 in the serum of mice developing spontaneous MULT1+ tumors. Interestingly, the authors detected a very high concentration of shed MULT1 in the sera of Apoe−/− mice exhibiting severe atherosclerosis and liver inflammation. Given that these autoimmune injuries observed in this mouse model depend on NKG2D activity5, it was unlikely that shed MULT1 exert an inhibitory effect on immunity.Surprisingly, the authors further showed that mouse tumor cells engineered to release a secreted form of MULT1 (secMULT1) similar to the shed MULT1 were rejected when injected into syngenic mice. Tumor rejection is dependent on NK cells as cells grow in NK but not in CD8+ T cell-depleted host and requires NKG2D. Importantly, the controlled release of secMULT1 from tumors harboring inducible secMULT1 promotes tumor rejection. To rule out the possibility that tumor cell rejection was due to intrinsic modifications of tumor cells, the author monitored the rejection of a mixture of 9:1 secMULT1: secMULT1+ tumor cells and showed an improved antitumoral effect on both secMULT1+ and, importantly, secMULT1 tumors. In addition, direct intratumoral injection of recombinant MULT1 promotes tumor rejection. These results suggested that soluble MULT1 mobilizes or activates anti-tumor effector cells. Deng et al. further reported increased frequencies of cytotoxic and IFN-γ-secreting NK cells associated with secMULT1+ tumors as compared to control tumor cells. Altogether, these data suggest that a shed NKG2D ligand can promote tumor rejection by boosting NK cell effector functions.Shed MULT1 could crosslink NKG2D and thus activate NK cells. However, shed and secMULT1 are monomeric molecules similar to the recombinant MULT1 which fails to activate NK cells in vitro. Formation of multivalent structures in vivo was not detected. In addition, whereas the transmembrane form of MULT1 can activate NK cells by crosslinking NKG2D and induces NKG2D downregulation, soluble MULT1 upregulates NKG2D on the NK cell surface. This upregulation is probably due do a decreased downregulation of NKG2D surface expression because no increase in NKG2D mRNA or protein was observed. Based on these findings, the authors hypothesized that NKG2D ligands expressed on non-tumor host cell membrane continuously engage NKG2D on NK cells, leading to NKG2D downregulation and NK cell desensitization, whereas soluble MULT1 blocks these interactions to increase NK cell responsiveness (Figure 1). Along this line, NK cells from mutant mice genetically deficient for the NKG2D ligand expressed by tumor-associated myeloid cells are not desensitized.Open in a separate windowFigure 1Tumor-associated cells express NKG2DL which can desensitize NK cells. Tumor shedding of MULT1 delivers soluble MULT1 that outcompetes for NKG2D binding and prevents NK cell desensitization. Boosted NK cell functions lead to improved tumor cell rejection by other activating receptors.The induction of cell desensitization by a frequent or even constant stimulation is a very common mechanism across living objects. Regarding NK cells, another example of tuning via desensitization resides in the impact of the long lasting absence of MHC class I molecules in their environment. Indeed, NK cells are hyporesponsive in a MHC-I-deficient host6. There are accumulating data indicating that in the absence of engagement of inhibitory receptors for MHC class I molecules, NK cells get desensitized due to their chronic interaction with endogenous stimulating ligands7. Indeed, in the absence of engagement of this inhibitory pathway, NK cell activation would be unleashed8. This scenario is supported by a series of in vitro and in vivo experiments in which NK cells are desensitized following chronic exposure to stimulatory molecules expressed at the surface of interacting cells9,10. Thus, the induction of MHC class I downregulation or NKG2D ligand upregulation boosts NK cell function, whereas the sustained lack of MHC class I or expression of NKG2D ligands impairs NK cell reactivity. This tuning of immune response as a function of the speed of change of the stimuli detected by lymphocytes is at the center of the recently proposed Discontinuity Theory11.Finally, consistent with their findings with secMULT1 but somewhat counter-intuitively, Deng et al. also show that NKG2D receptor deficiency or blockade using anti-NKG2D monoclonal antibodies mimics the effect of soluble MULT1. Indeed, in both conditions, NK cell effector functions are boosted, resulting in improved tumor rejection. Similarly, blocking other NK activating receptors, such as NKp46, may also lead to NK cell desensitization12. Checkpoint inhibitory receptors are revolutionizing the treatment of cancers by inhibiting the inhibitory receptors. The findings reported by Deng et al. together with earlier results propose alternative strategies of cancer treatment using antibodies that are directed against activating receptors. In the case of NKG2D, the chronic engagement of NK cells with membrane-bound NKG2D ligand affects not only NKG2D-dependent but also NKG2D-independent signaling pathways9. The blockade of NKG2D desensitization by antibodies directed against NKG2D should thus also boost NK cell activation via other pathways, such as antibody-dependent cell cytotoxicity. However, the precise identification of the ligand-receptor pair involved in the control of tumors by NK cells will be a limiting factor to these innovative therapeutic approaches. Indeed, antibodies against activating receptors should be designed to boost NK cell reactivity but should not block the recognition of the tumors by NK cells. Finally, as the tuning of NK cell reactivity by soluble NKG2D ligands depends on their affinity for NKG2D, the pre-clinical development of this new class of drug candidates might reveal novel pharmacokinetics and the pharmacodynamics guidelines.  相似文献   

2.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

3.
4.
Ligands of the prototypical activating NK receptor NKG2D render cancer cells susceptible to NK cell-mediated cytolysis if expressed at sufficiently high levels. However, malignant cells employ mechanisms to evade NKG2D-mediated immunosurveillance, such as NKG2D ligand (NKG2DL) shedding resulting in reduced surface expression levels. In addition, systemic downregulation of NKG2D on NK cells of cancer patients has been observed in many studies and was attributed to soluble NKG2DL (sNKG2DL), although there also are conflicting data. Likewise, relevant expression of NKG2DL in leukemia has been reported by some, but not all studies. Hence, we comprehensively studied expression, release, and function of the NKG2D ligands MHC class I chain-related molecules A and B and UL16-binding proteins 1-3 in 205 leukemia patients. Leukemia cells of most patients (75%) expressed at least one NKG2DL at the surface, and all investigated patient sera contained elevated sNKG2DL levels. Besides correlating NKG2DL levels with clinical data and outcome, we demonstrate that sNKG2DL in patient sera reduce NKG2D expression on NK cells, resulting in impaired antileukemia reactivity, which also critically depends on number and levels of surface-expressed NKG2DL. Together, we provide comprehensive data on the relevance of NKG2D/NKG2DL expression, release, and function for NK reactivity in leukemia, which exemplifies the mechanisms underlying NKG2D-mediated tumor immunosurveillance and escape.  相似文献   

5.
6.
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disorder of unknown etiology. IPF is likely the result of complex interrelationships between environmental and host factors, although the genetic risk factors are presently uncertain. Because we have found that some MHC polymorphisms confer susceptibility to IPF, in the present study we aimed to evaluate the role of the MHC class I chain-related gene A (MICA) in the risk of developing the disease. MICA molecular typing was done by reference strand mediated conformation analysis in a cohort of 80 IPF patients and 201 controls. In addition, the lung cellular source of the protein was examined by immunohistochemistry, the expression of the MICA receptor NKG2D in lung cells by flow cytometry and soluble MICA by ELISA. A significant increase of MICA*001 was observed in the IPF cohort (OR = 2.91, 95% CI = 1.04–8.25; pC = 0.03). Likewise, the frequency of the MICA*001/*00201 genotype was significantly increased in patients with IPF compared with the healthy controls (OR = 4.72, 95% CI = 1.15–22.51; pC = 0.01). Strong immunoreactive MICA staining was localized in alveolar epithelial cells and fibroblasts from IPF lungs while control lungs were negative. Soluble MICA was detected in 35% of IPF patients compared with 12% of control subjects (P = 0.0007). The expression of NKG2D was significantly decreased in γδ T cells and natural killer cells obtained from IPF lungs. These findings indicate that MICA polymorphisms and abnormal expression of the MICA receptor NKG2D might contribute to IPF susceptibility.  相似文献   

7.
Zhou Z  Zhang C  Zhang J  Tian Z 《PloS one》2012,7(5):e36928
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.  相似文献   

8.
In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-gamma and TNF-alpha upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival.  相似文献   

9.
Zhang B  Wei H  Zheng X  Zhang J  Sun R  Tian Z 《Peptides》2005,26(3):405-412
NKG2D is an activating receptor expressed on most of human NK cells, one of whose ligands is MICA. Based on the crystal structure of NKG2D-MICA complex, we synthesized three short peptides (P1, P2 and P3), mimicking functional alpha1 and alpha2 domain of MICA. The inhibitory effects of three peptides on NK-92 cells, a human NK cell line against Hela cells were observed and the inhibitory percentage was 38% at maximum for P1+P2+P3 in concentration of 1nM. The same peptides had no effect on NK-92 cell against target cells lacking MICA (K562 cells line). The unrelated peptides as controls had no effect on the system. Two peptides (P2 and P3) were prolonged at one or both ends, and the longer forms of peptides exerted stronger inhibitory effects than their shorter forms. Each combination of two peptides exerted a stronger function than single peptide (P1, P2, P3), indicating that shedding of longer amino acid sequence of alpha1 domain or more domain sites of MICA are better than shorter sequence and fewer sites. P1+P2+P3 revealed the almost same inhibitory rate as the soluble MICA (sMICA). P1+P2+P3 were also able to alleviate the concanavalin A-induced murine autoimmune hepatitis in vivo, conforming the similarity of NKG2D between human and mice. The results demonstrate that MICA-mimicking peptides will be useful to search the specific functional sites for NKG2D-MICA interaction, but also promising in explaining NKG2D-related autoimmunity.  相似文献   

10.
11.
NKG2D ligands (NKG2DLs) are a group of major histocompatibility complex (MHC) class I-like molecules, the expression of which is induced by cellular stresses such as infection, tumorigenesis, heat shock, tissue damage, and DNA damage. They act as a molecular danger signal alerting the immune system for infected or neoplastic cells. Mammals have two families of NKG2DL genes: the MHC-encoded MIC gene family and the ULBP gene family encoded outside the MHC region in most mammals. Rodents such as mice and rats lack the MIC family of ligands. Interestingly, some mammals have NKG2DL-like molecules named MILL that are phylogenetically related to MIC, but do not function as NKG2DLs. In this paper, we review our current knowledge of the MIC, ULBP, and MILL gene families in representative mammalian species and discuss the origin and evolution of the NKG2DL gene family.  相似文献   

12.
Recent studies have shown that NK-dendritic cell (DC) interaction plays an important role in the induction of immune response against tumors and certain viruses. Although the effect of this interaction is bidirectional, the mechanism or molecules involved in this cross-talk have not been identified. In this study, we report that coculture with NK cells causes several fold increase in IL-12 production by Toxoplasma gondii lysate Ag-pulsed DC. This interaction also leads to stronger priming of Ag-specific CD8+ T cell response by these cells. In vitro blockade of NKG2D, a molecule present on human and murine NK cells, neutralizes the NK cell-induced up-regulation of DC response. Moreover, treatment of infected animals with Ab to NKG2D receptor compromises the development of Ag-specific CD8+ T cell immunity and reduces their ability to clear parasites. These studies emphasize the critical role played by NKG2D in the NK-DC interaction, which apparently is important for the generation of robust CD8+ T cell immunity against intracellular pathogens. To the best of our knowledge, this is the first work that describes in vivo importance of NKG2D during natural infection.  相似文献   

13.
目的用5-氟尿嘧啶(5-fluorouracil,5-FU)处理HeLa细胞,检测其NKG2D配体MICA的表达及其对NK92细胞杀伤敏感性的变化。方法不同浓度的5-Fu处理HeLa细胞,在不同时间点用半定量PCR及流式细胞术检测HeLa细胞表面的NKG2D配体MICA在RNA及蛋白水平的表达变化情况,用MTT法检测NKG2D抗体封闭NK92细胞的NKG2D受体前后,NK92细胞对HeLa细胞的杀伤作用。结果不同浓度的5.Fu作用于HeLa细胞后,半定量RT—PCR结果显示MICA表达随5-Fu作用浓度增加逐渐增高。而且40μg/ml5.Fu作用于HeLa细胞后随着作用时间的延长(0、8、16、24h)MICA表达增加,流式细胞术检测结果表明,MICA表达的增加主要依赖于未凋亡细胞的MICA表达。在40μg/ml5-FU作用24h,效靶比为2.5:1,5:1,10:1,20:1时都检测到NK92细胞对HeLa细胞的杀伤增强,杀伤作用可部分被NKG2D抗体抑制。结论5-FU能够上调HeLa细胞表面NKG2D配体MICA的表达,增强HeLa细胞对NK92细胞的敏感性,提示化疗联合NK细胞免疫治疗宫颈癌可产生协同作用,提高治疗效果。  相似文献   

14.
15.
Costimulation of multiple NK cell activation receptors by NKG2D   总被引:10,自引:0,他引:10  
The activation of NK cells is mediated through specific interactions between activation receptors and their respective ligands. Little is known, however, about whether costimulation, which has been well characterized for T cell activation, occurs in NK cells. To study the function of NKG2D, a potential NK costimulatory receptor, we have generated two novel hamster mAbs that recognize mouse NKG2D. FACS analyses demonstrate that mouse NKG2D is expressed on all C57BL/6 IL-2-activated NK (lymphokine-activated killer (LAK)) cells, all splenic and liver NK cells, and approximately 50% of splenic NKT cells. Consistent with limited polymorphism of NKG2D, its sequence is highly conserved, and the anti-NKG2D mAbs react with NK cells from a large number of different mouse strains. In chromium release assays, we show that stimulation of NK cells with anti-NKG2D mAb can redirect lysis. Also, enhanced lysis of transfected tumor targets expressing NKG2D ligand could be inhibited by addition of anti-NKG2D mAb. Interestingly, stimulation of LAK cells via NKG2D alone does not lead to cytokine release. However, stimulation of LAK via both an NK activation receptor (e.g., CD16, NK1.1, or Ly-49D) and NKG2D leads to augmentation of cytokine release compared with stimulation through the activation receptor alone. These results demonstrate that NKG2D has the ability to costimulate multiple NK activation receptors.  相似文献   

16.
Making sense of the diverse ligand recognition by NKG2D   总被引:7,自引:0,他引:7  
NKG2D recognizes multiple diverse ligands. Despite recent efforts in determining the crystal structures of NKG2D-ligand complexes, the principle governing this receptor-ligand recognition and hence the criteria for identifying unknown ligands of NKG2D remain central issues to be resolved. Here we compared the molecular recognition between NKG2D and three of the known ligands, UL16 binding protein (ULBP), MHC class I-like molecule, and retinoic acid early inducible gene as observed in the ligand-complexed crystal structures. The comparison shows that while the receptor uses a common interface region to bind the three diverse ligands, each ligand forms a distinct, but overlapping, set of hydrogen bonds, hydrophobic interactions, and salt bridges, illustrating the underlying principle of NKG2D-ligand recognition being the conservation in overall shape complementarity and binding energy while permitting variation in ligand sequence through induced fit recognition. To further test this hypothesis and to distinguish between diverse recognition and promiscuous ligand binding, four ULBP3 interface mutations, H21A, E76A, R82M, and D169A, were generated to each disrupt a single hydrogen bond or salt bridge. All mutant ULBP3 displayed reduced receptor binding, suggesting a specific, rather than promiscuous, receptor-ligand recognition. Mutants with severe loss of binding affect the receptor interactions that are mostly buried. Finally, a receptor-ligand recognition algorithm was developed to assist the identification of diverse NKG2D ligands based on evaluating the potential hydrogen bonds, hydrophobic interactions, and salt bridges at the receptor-ligand interface.  相似文献   

17.
Recently, it has become apparent that surface proteins commonly transfer between immune cells in contact. Inhibitory receptors and ligands exchange between cells during NK cell surveillance and we report here that NK cells also acquire activating ligands from target cells. Specifically, the stress-inducible activating ligand for NKG2D, MHC class I-related chain A (MICA), transferred to NK cells upon conjugation with MICA-expressing target cells. Acquisition of MICA from target cells was dependent on cell contact and occurred after accumulation of MICA at the immunological synapse. Moreover, transfer of MICA was facilitated by specific molecular recognition via NKG2D and augmented by Src kinase signaling. Importantly, MICA associated with its new host NK cell membrane in an orientation that allowed engagement with NKG2D in trans and indeed could down-regulate NKG2D in subsequent homotypic interactions with other NK cells. MICA captured from target cells could subsequently transfer between NK cells and, more importantly, NK cell degranulation was triggered in such NK cell-NK cell interactions. Thus, NK cells can influence other NK cells with proteins acquired from target cells and our data specifically suggest that NK cells could lyse other NK cells upon recognition of activating ligands acquired from target cells. This mechanism could constitute an important function for immunoregulation of NK cell activity.  相似文献   

18.
Pig-to-human xenotransplantation has been proposed as a means to alleviate the shortage of human organs for transplantation, but cellular rejection remains a hurdle for successful xenograft survival. NK cells have been implicated in xenograft rejection and are tightly regulated by activating and inhibitory receptors recognizing ligands on potential target cells. The aim of the present study was to analyze the role of activating NK receptors including NKp30, NKp44, NKp46, and NKG2D in human xenogeneic NK cytotoxicity against porcine endothelial cells (pEC). (51)Cr release and Ab blocking assays were performed using freshly isolated, IL-2-activated polyclonal NK cell populations as well as a panel of NK clones. Freshly isolated NK cells are NKp44 negative and lysed pEC exclusively in an NKG2D-dependent fashion. In contrast, the lysis of pEC mediated by activated human NK cells depended on both NKp44 and NKG2D, since a complete protection of pEC was achieved only by simultaneous blocking of these activating NK receptors. Using a panel of NK clones, a highly significant correlation between anti-pig NK cytotoxicity and NKp44 expression levels was revealed. Other triggering receptors such as NKp30 and NKp46 were not involved in xenogeneic NK cytotoxicity. Finally, Ab-dependent cell-mediated cytotoxicity of pEC mediated by human NK cells in the presence of xenoreactive Ab was not affected by blocking of activating NK receptors. In conclusion, strategies aimed to inhibit interactions between NKp44 and NKG2D on human NK cells and so far unknown ligands on pEC may prevent direct NK responses against xenografts but not xenogeneic Ab-dependent cell-mediated cytotoxicity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号