首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of hyper- and hypoventilation on gastric and sublingual PCO(2).   总被引:1,自引:0,他引:1  
We investigated the effects of hyper- and hypoventilation on gastric (Pg(CO(2))) and sublingual (Psl(CO(2))) tissue PCO(2) before, during, and after reversal of hemorrhagic shock. Pg(CO(2)) was measured with ion-sensitive field-effect transistor sensor and Psl(CO(2)) with a CO(2) microelectrode. Under physiological conditions and during hemorrhagic shock, decreases in arterial (Pa(CO(2))) and end-tidal (PET(CO(2))) PCO(2) induced by hyperventilation produced corresponding decreases in Pg(CO(2)) and Psl(CO(2)). Hypoventilation produced corresponding increases in Pa(CO(2)), PET(CO(2)), Pg(CO(2)), and Psl(CO(2)). Accordingly, acute decreases and increases in Pa(CO(2)) and PET(CO(2)) produced statistically similar decreases and increases in Pg(CO(2)) and Psl(CO(2)). No significant changes in the tissue PCO(2)-Pa(CO(2)) gradients were observed during hemorrhagic shock in the absence or in the presence of hyper- or hypoventilation. Acute changes in Pg(CO(2)) and Psl(CO(2)) should, therefore, be interpreted in relationship with concurrent changes in Pa(CO(2)) and/or PET(CO(2)).  相似文献   

2.
Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 μM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 μM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions.  相似文献   

3.
Previous studies indicate that Long-Evans rats can be operantly trained to discriminate inspired CO(2) concentrations as low as 0.5%. This ability has been proposed to be due to the presence of CO(2)-sensitive olfactory receptors that contain the enzyme carbonic anhydrase (CA). The objectives of the present study were as follows: 1) to determine whether Zucker rats could be operantly conditioned to discriminate low concentrations of CO(2) from control air and 2) to determine the rats' CO(2) detection thresholds before and after nasal perfusion of mammalian Ringers or methazolamide, a CA inhibitor. Rats were operantly trained to discriminate between 25% CO(2) and control air (0% CO(2)) and were then subjected to various CO(2) concentrations (0.5-12.5%) to determine their CO(2) detection thresholds. The average (+/-standard error of mean) baseline CO(2) detection threshold of 7 Zucker rats was 0.48 +/- 0.07% CO(2), whereas the average CO(2) detection thresholds after nasal perfusion of either mammalian Ringers or 10(-2) M methazolamide were 1.41 +/- 0.30% and 5.92 +/- 0.70% CO(2), respectively. The average CO(2) detection threshold after methazolamide was significantly greater (P<0.0001) than the baseline detection threshold. These findings demonstrate that like Long-Evans rats, Zucker rats can be trained to discriminate low concentrations of CO(2) and that inhibition of nasal CA reduces the ability of the rats to detect low concentrations (3.5% and below) but not higher concentrations of CO(2) (12.5%). These results add to the growing evidence that olfactory neurons exhibiting CA activity are CO(2) chemoreceptors sensitive to physiological concentrations of CO(2).  相似文献   

4.
Accurately predicting plant function and global biogeochemical cycles later in this century will be complicated if stomatal conductance (g(s)) acclimates to growth at elevated [CO(2)], in the sense of a long-term alteration of the response of g(s) to [CO(2)], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO(2)] of interest. Photosynthetic acclimation to long-term growth at elevated [CO(2)] occurs frequently. Acclimation of g(s) has rarely been examined, even though stomatal density commonly changes with growth [CO(2)]. Soybean was grown under field conditions at ambient [CO(2)] (378 micromol mol(-1)) and elevated [CO(2)] (552 micromol mol(-1)) using free-air [CO(2)] enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, vol IV, 221-224) with measurements of leaf gas exchange. The dependence of g(s) on A, h and [CO(2)] at the leaf surface was unaltered by long-term growth at elevated [CO(2)]. This suggests that the commonly observed decrease in g(s) under elevated [CO(2)] is due entirely to the direct instantaneous effect of [CO(2)] on g(s) and that there is no longer-term acclimation of g(s) independent of photosynthetic acclimation. The model accurately predicted g(s) for soybean growing under ambient and elevated [CO(2)] in the field. Model parameters under ambient and elevated [CO(2)] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO(2)] could be modelled without the need for parameterization at each growth [CO(2)].  相似文献   

5.
A carbon dioxide requirement for growth of Streptococcus sanguis was readily demonstrated in a fermentor where the gas atmosphere could be controlled. Growth at a maximum rate occurred immediately in response to the appropriate CO(2) concentration; growth stopped when CO(2) was deleted. Washed inocula consisting of exponentially growing cells required a minimum of 2.4% CO(2), postexponential phase cells needed 1.2 to 1.8% CO(2) immediately and 2.4% CO(2) shortly thereafter, whereas stationary phase cells required three sequential increases in CO(2) from 0.3 to 1.8 to 2.4% within the first 90 min of growth. These CO(2) concentrations permitted each inoculum to initiate growth immediately at the same maximum rate. These results also showed that physiologically "old" cells had the same capacity for growth as "young" cells when the CO(2) concentrations were appropriate for the type of inoculum. Continued exponential growth of the culture at the same optimum rate required 2.4% CO(2). Lower concentrations of CO(2) were rate limiting and the resulting exponential rate was proportional to the CO(2) concentration. The "normal" lag period of S. sanguis appears to be an artifact induced by a CO(2) deficiency.  相似文献   

6.
CO2和1-MCP组合处理对磨盘柿贮藏效果的影响   总被引:2,自引:0,他引:2  
以磨盘柿采后果实为材料,研究1-MCP的处理以及CO2脱涩与1-MCP组合处理对磨盘柿室温和0~1℃贮藏过程中果实硬度、可溶性单宁含量、总抗坏血酸(TAA)含量以及抗氧化活性的影响。结果显示:(1)贮藏过程中柿果实硬度随时间延长呈下降趋势,室温贮藏CO2处理5 d、CO2处理后进行1-MCP(CO2//1-MCP)处理10 d、1-MCP处理后进行CO2(1-MCP//CO2)处理15 d、CO2与1-MCP同时(CO2+1-MCP)处理30 d均完全软化,0~1℃贮藏75 d后硬度最高的是CO2+1-MCP处理(12.43 kg.cm-2),最低的是CO2//1-MCP处理(2.80 kg.cm-2),甚至低于CO2处理(5.71 kg.cm-2);(2)柿果实可溶性单宁和总抗坏血酸(TAA)含量与脱涩有关,CO2处理、CO2//1-MCP处理、1-MCP//CO2处理和CO2+1-MCP处理大幅低于CK和1-MCP处理,1-MCP处理抑制了可溶性单宁和TAA含量的下降;(3)室温贮藏中除CO2处理之外的处理柿果实总酚含量呈小幅上升趋势,0~1℃贮藏中CK、1-MCP处理、1-MCP//CO2处理和CO2+1-MCP处理的总酚含量稳定在9.91~12.38 mg.g-1FW之间,CO2处理和CO2//1-MCP处理于30 d之后迅速下降,至75 d时分别只有6.83和6.32 mg.g-1FW;(4)各组处理柿果实ABTS自由基清除能力和氧自由基清除能力值(ORAC)的变化趋势与总酚含量大致相当。研究发现,1-MCP能有效阻止磨盘柿果实贮藏期间的硬度、可溶性单宁含量、TAA含量以及抗氧化活性的下降,CO2脱涩与1-MCP处理的不同顺序对硬度和抗氧化活性影响巨大,但对可溶性单宁和TAA含量影响甚微;先CO2脱涩后1-MCP处理对磨盘柿贮藏效应影响不大,1-MCP处理和高浓度CO2脱涩同时进行是磨盘柿脱涩保鲜的最优方案。  相似文献   

7.
We studied muscle blood flow, muscle oxygen uptake (VO(2)), net muscle CO uptake, Mb saturation, and intracellular bioenergetics during incremental single leg knee-extensor exercise in five healthy young subjects in conditions of normoxia, hypoxia (H; 11% O(2)), normoxia + CO (CO(norm)), and 100% O(2) + CO (CO(hyper)). Maximum work rates and maximal oxygen uptake (VO(2 max)) were equally reduced by approximately 14% in H, CO(norm), and CO(hyper). The reduction in arterial oxygen content (Ca(O(2))) (approximately 20%) resulted in an elevated blood flow (Q) in the CO and H trials. Net muscle CO uptake was attenuated in the CO trials. Suprasystolic cuff measurements of the deoxy-Mb signal were not different in terms of the rate of signal rise or maximum signal attained with and without CO. At maximal exercise, calculated mean capillary PO(2) was most reduced in H and resulted in the lowest Mb-associated PO(2). Reductions in ATP, PCr, and pH during H, CO(norm), and CO(hyper) occurred earlier during progressive exercise than in normoxia. Thus the effects of reduced Ca(O(2)) due to mild CO poisoning are similar to H.  相似文献   

8.
1. The attachment of the cercaria to artificial substrates (offered via dialyzing membranes) in definite media was investigated under conditions of variable pH and [CO2]. 2. A decrease of the pH of the substrate releases only attachments in CO2 containing media and consequently acts via CO2 systems of the medium. 3. As effective components of CO2 systems, dissolved CO2 + H2CO3 are confirmed. 4. The sensitivity of the reaction on gradients of the CO2 partial pressure (in solution) could be established by offering substrates with lowered pH in CO2 containing media. Thus, by raising the CO2 partial pressure from ca. 0,04% to 0,15% maximal fixation rates were obtained (Fig. 3). 5. The carboanhydrase inhibitor acetazolamide, when added to the medium, had no direct influence on the CO2 receptors.  相似文献   

9.
CO(2) released by respiring cells in tree stems can either diffuse to the atmosphere or dissolve in xylem sap. In this study, the internal and external fluxes of CO(2) released from respiring stems of five sycamore (Platanus occidentalis L.) trees were calculated. Mean rates of stem respiration were highest in mid-afternoon and lowest at night, and were positively correlated with air temperature. Over a 24 h period, on average 34% of the CO(2) released by respiring cells in the measured stem segment remained within the tree. CO(2) efflux to the atmosphere consisted of similar proportions of CO(2) derived from local respiring cells (55%) and CO(2) that had been transported in the xylem (45%), indicating that CO(2) efflux does not accurately estimate respiration. A portion of the efflux of transported CO(2) appeared to have originated in the root system. A modification of the method for calculating stem respiration based on internal and external fluxes of CO(2) was developed to separate efflux due to local respiration from efflux of transported CO(2).  相似文献   

10.
在CO2浓度分别为当今CO2浓度(360 mL/L)和加富浓度(5 000 mL/L)条件下,研究了UV-B胁迫对亚心形扁藻(Platymonas subcordiformis (Wille) Hazen)的光合作用、膜脂过氧化和抗氧化酶活性的影响。实验结果表明:(1) UV-B单独作用下,亚心形扁藻的干重、光合速率、叶绿素a (Chl a)和类胡萝卜素(Car.)含量显著降低,CO2加富单独作用下,亚心形扁藻的干重和光合速率显著升高,叶绿素a和类胡萝卜素含量与对照相比没有显著变化,而UV-B与CO2共同作用则使亚心形扁藻的干重和光合速率与对照相比没有显著变化,叶绿素a和类胡萝卜素含量显著降低。(2) UV-B单独作用和CO2加富单独作用都使可溶性蛋白含量显著降低,UV-B与CO2共同作用下的可溶性蛋白含量比UV-B单独作用的要高。高CO2对藻的可溶性蛋白含量的变化在很大程度上归因于Rubisco蛋白的降低。(3)UV-B单独作用下,O2-. 产生速率、H2O2 含量和MDA含量显著升高,而CO2加富单独作用下,O2-. 产生速率、H2O2 含量和MDA含量显著降低,与UV-B单独作用相比,UV-B与CO2共同作用使O2-. 产生速率、H2O2 含量和MDA含量显著降低。说明CO2加富可以减少活性氧对亚心形扁藻的氧化胁迫,同时减少UV-B对亚心形扁藻的膜脂过氧化伤害。(4) UV-B单独作用下,SOD、POD、CAT、GR和GPX活性显著升高,高CO2  相似文献   

11.
Effects of low atmospheric CO(2) on plants: more than a thing of the past   总被引:5,自引:0,他引:5  
In recent geological time, atmospheric CO(2) concentrations were 25-50% below the current level. Photosynthetic productivity of C(3) plants is substantially reduced at these low CO(2) levels, particularly at higher temperatures and during stress. Acclimation of photosynthesis to reduced CO(2) levels might compensate for some of this inhibition, but plants have a limited capacity to modulate Rubisco and other photosynthetic proteins following CO(2) reduction. Because of this, low CO(2) probably acted as a significant evolutionary agent, selecting plants adapted to CO(2) deficiency. Adaptations to low CO(2) might still exist in plants and might constrain responses to a rising CO(2) concentration.  相似文献   

12.
Atmospheric CO(2) concentration ([CO(2)]) is rising on a global scale and is known to affect flowering time. Elevated [CO(2)] may be as influential as temperature in determining future changes in plant developmental timing, but little is known about the molecular mechanisms that control altered flowering times at elevated [CO(2)]. Using Arabidopsis thaliana, the expression patterns were compared of floral-initiation genes between a genotype that was selected for high fitness at elevated [CO(2)] and a nonselected control genotype. The selected genotype exhibits pronounced delays in flowering time when grown at elevated [CO(2)], whereas the control genotype is unaffected by elevated [CO(2)]. Thus, this comparison provides an evolutionarily relevant system for gaining insight into the responses of plants to future increases in [CO(2)]. Evidence is provided that elevated [CO(2)] influences the expression of floral-initiation genes. In addition, it is shown that delayed flowering at elevated [CO(2)] is associated with sustained expression of the floral repressor gene, FLOWERING LOCUS C (FLC), in an elevated CO(2)-adapted genotype. Understanding the mechanisms that account for changes in plant developmental timing at elevated [CO(2)] is critical for predicting the responses of plants to a high-CO(2) world of the near future.  相似文献   

13.
Kopper BJ  Lindroth RL 《Oecologia》2003,134(1):95-103
The purpose of this study was to assess the independent and interactive effects of CO(2), O(3), and plant genotype on the foliar quality of a deciduous tree and the performance of a herbivorous insect. Two trembling aspen (Populus tremuloides Michaux) genotypes differing in response to CO(2) and O(3) were grown at the Aspen FACE (Free Air CO(2) Enrichment) site located in northern Wisconsin, USA. Trees were exposed to one of four atmospheric treatments: ambient air (control), elevated carbon dioxide (+CO(2); 560 microl/l), elevated ozone (+O(3); ambient x1.5), and elevated CO(2)+O(3). We measured the effects of CO(2) and O(3) on aspen phytochemistry and on performance of forest tent caterpillar (Malacosoma disstria Hübner) larvae. CO(2) and O(3) treatments influenced foliar quality for both genotypes, with the most notable effects being that elevated CO(2) reduced nitrogen and increased tremulacin levels, whereas elevated O(3) increased early season nitrogen and reduced tremulacin levels, relative to controls. With respect to insects, the +CO(2) treatment had little or no effect on larval performance. Larval performance improved in the +O(3) treatment, but this response was negated by the addition of elevated CO(2) (i.e., +CO(2)+O(3) treatment). We conclude that tent caterpillars will have the greatest impact on aspen under current CO(2) and high O(3) levels, due to increases in insect performance and decreases in tree growth, whereas tent caterpillars will have the least impact on aspen under high CO(2) and low O(3) levels, due to moderate changes in insect performance and increases in tree growth.  相似文献   

14.
Levels of atmospheric CO(2) have been increasing steadily over the last century and are projected to increase even more dramatically in the future. Soybeans (Glycine max L.) grown under elevated levels of CO(2) have larger herbivore populations than soybeans grown under ambient levels of CO(2). Increased abundance could reflect the fact that these herbivores are drawn in by increased amounts of volatiles or changes in the composition of volatiles released by plants grown under elevated CO(2) conditions. To determine impacts of elevated CO(2) on olfactory preferences, Japanese beetles (Popillia japonica Newman) and soybean aphids (Aphis glycines Matsumura) were placed in Y-tube olfactometers with a choice between ambient levels of CO(2) gas versus elevated levels of CO(2) gas or damaged and undamaged leaves and plants grown under ambient levels of CO(2) versus damaged and undamaged plants grown under elevated levels of CO(2). All plants had been grown from seeds under ambient or elevated levels of CO(2). Painted lady butterflies (Vanessa cardui L.) were placed in an oviposition chamber with a choice between plants grown under ambient and elevated levels of CO(2). A. glycines and V. cardui showed no significant preference for plants in either treatment. P. japonica showed no significant preference between ambient levels and elevated levels of CO(2) gas. There was a significant P. japonica preference for damaged plants grown under ambient CO(2) versus undamaged plants but no preference for damaged plants grown under elevated CO(2) versus undamaged plants. P. japonica also preferred damaged plants grown under elevated levels of CO(2) versus damaged plants grown under ambient levels of CO(2). This lack of preference for damaged plants grown under elevated CO(2) versus undamaged plants could be the result of the identical elevated levels of a green leaf volatile (2-hexenal) present in all foliage grown under elevated CO(2) regardless of damage status. Green leaf volatiles are typically released from damaged leaves and are used as kairomones by many herbivorous insects for host plant location. An increase in production of volatiles in soybeans grown under elevated CO(2) conditions may lead to larger herbivore outbreaks in the future.  相似文献   

15.
Ribulose-1,5-bisphosphate carboxylase/oxygenase [Rbu(1,5)P2CO] from plant sources shows a biphasic reaction course when assayed with more than 2 mM ribulose 1,5-bisphosphate [Rbu(1,5)P2]. In the burst, Rbu(1,5)P2CO has its substrate-binding sites occupied with Rbu(1,5)P2 for the initial few minutes, then both substrate-binding and regulatory sites are occupied by Rbu(1,5)P2 in the subsequent linear phase, at physiological concentrations of Rbu(1,5)P2 [A. Yokota (1991) J. Biochem. (Tokyo) 110, 246-252]. This study attempts the characterization of spinach Rbu(1,5)P2CO carrying Rbu(1,5)P2 at the regulatory sites and the interaction of Rbu(1,5)P2CO activase with Rbu(1,5)P2CO purified with poly(ethylene glycol) 4000 without denaturation. Binding of Rbu(1,5)P2 to the regulatory sites strongly influences the temperature dependence of the carboxylase activity of Rbu(1,5)P2CO. The activation energy of Rbu(1,5)P2CO with Rbu(1,5)P2 at the regulatory sites was 40% larger than that without Rbu(1,5)P2 over 30 degrees C, although the binding did not affect the activation energy below this temperature. This caused the almost linear reaction course of the carboxylase reaction at 50 degrees C. The optimum pH for the activity of Rbu(1,5)P2CO carrying Rbu(1,5)P2 at the sites was 8.0-8.2, and increased by about pH 0.2 from that of Rbu(1,5)P2CO without Rbu(1,5)P2. The ratio of the activity of the former form to that of the latter increased with increasing pH with an inflection point at pH 8.1. The increase in the ratio was accompanied by a decrease in the hysteric conformational change of Rbu(1,5)P2CO. The ATP-hydrolyzing activity inherent to Rbu(1,5)P2CO activase was stimulated about twofold by 3-5 mM Rbu(1,5)P2. Rbu(1,5)P2CO in the inactive complex with Rbu(1,5)P2 experienced hysteresis and bound Rbu(1,5)P2 at the regulatory sites during activation in the presence of Rbu(1,5)P2CO activase. Evidence was obtained that Rbu(1,5)P2CO activase promoted the activation of Rbu(1,5)P2CO through binding to the large subunits of Rbu(1,5)P2CO.  相似文献   

16.
Homeostatic control of body fluid CO(2) is essential in animals but is poorly understood. C.?elegans relies on diffusion for gas exchange and avoids environments with elevated CO(2). We show that C.?elegans temperature, O(2), and salt-sensing neurons are also CO(2) sensors mediating CO(2) avoidance. AFD thermosensors respond to increasing CO(2) by a fall and then rise in Ca(2+) and show a Ca(2+) spike when CO(2) decreases. BAG O(2) sensors and ASE salt sensors are both activated by CO(2) and remain tonically active while high CO(2) persists. CO(2)-evoked Ca(2+) responses in AFD and BAG neurons require cGMP-gated ion channels. Atypical soluble guanylate cyclases mediating O(2) responses also contribute to BAG CO(2) responses. AFD and BAG neurons together stimulate turning when CO(2) rises and inhibit turning when CO(2) falls. Our results show that C.?elegans senses CO(2) using functionally diverse sensory neurons acting homeostatically to minimize exposure to elevated CO(2).  相似文献   

17.
Measurements of CO(2) permeability in oocytes and liposomes containing water channel aquaporin-1 (AQP1) have suggested that AQP1 is able to transport both water and CO(2). We studied the physiological consequences of CO(2) transport by AQP1 by comparing CO(2) permeabilities in erythrocytes and intact lung of wild-type and AQP1 null mice. Erythrocytes from wild-type mice strongly expressed AQP1 protein and had 7-fold greater osmotic water permeability than did erythrocytes from null mice. CO(2) permeability was measured from the rate of intracellular acidification in response to addition of CO(2)/HCO(3)(-) in a stopped-flow fluorometer using 2',7'-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) as a cytoplasmic pH indicator. In erythrocytes from wild-type mice, acidification was rapid (t((1)/(2)), 7.3 +/- 0.4 ms, S.E., n = 11 mice) and blocked by acetazolamide and increasing external pH (to decrease CO(2)/HCO(3)(-) ratio). Apparent CO(2) permeability (P(CO(2))) was not different in erythrocytes from wild-type (0.012 +/- 0.0008 cm/s) versus null (0.011 +/- 0.001 cm/s) mice. Lung CO(2) transport was measured in anesthetized, ventilated mice subjected to a decrease in inspired CO(2) content from 5% to 0%, producing an average decrease in arterial blood pCO(2) from 77 +/- 4 to 39 +/- 3 mm Hg (14 mice) with a t((1)/(2)) of 1.4 min. The pCO(2) values and kinetics of decreasing pCO(2) were not different in wild-type versus null mice. Because AQP1 deletion did not affect CO(2) transport in erythrocytes and lung, we re-examined CO(2) permeability in AQP1-reconstituted liposomes containing carbonic anhydrase (CA) and a fluorescent pH indicator. Whereas osmotic water permeability in AQP1-reconstituted liposomes was >100-fold greater than that in control liposomes, apparent P(CO(2)) (approximately 10(-3) cm/s) did not differ. Measurements using different CA concentrations and HgCl(2) indicated that liposome P(CO(2)) is unstirred layer-limited and that HgCl(2) slows acidification because of inhibition of CA rather than AQP1. These results provide direct evidence against physiologically significant AQP1-mediated CO(2) transport and establish an upper limit to the CO(2) permeability through single AQP1 water channels.  相似文献   

18.
In order to see the effect of CO(2) inhibition resulting from the use of pure oxygen, we carried out a comparative fed-batch culture study of polyhydroxybutyric acid (PHB) production by Ralstonia eutropha using air and pure oxygen in 5-L, 30-L, and 300-L fermentors. The final PHB concentrations obtained with pure O(2) were 138.7 g/L in the 5-L fermentor and 131.3 g/L in the 30-L fermentor, which increased 2.9 and 6.2 times, respectively, as compared to those obtained with air. In the 300-L fermentor, the fed-batch culture with air yielded only 8.4 g/L PHB. However, the maximal CO(2) concentrations in the 5-L fermentor increased significantly from 4.1% (air) to 15.0% (pure O(2)), while it was only 1.6% in the 30-L fermentor with air, but reached 14.2% in the case of pure O(2). We used two different experimental methods for evaluating CO(2) inhibition: CO(2) pulse injection and autogenous CO(2) methods. A 10 or 22% (v/v) CO(2) pulse with a duration of 3 or 6 h was introduced in a pure-oxygen culture of R. eutropha to investigate how CO(2) affects the synthesis of biomass and PHB. CO(2) inhibited the cell growth and PHB synthesis significantly. The inhibitory effect became stronger with the increase of the CO(2) concentration and pulse duration. The new proposed autogenous CO(2) method makes it possible to place microbial cells under different CO(2) level environments by varying the gas flow rate. Introduction of O(2) gas at a low flow rate of 0.42 vvm resulted in an increase of CO(2) concentration to 30.2% in the exit gas. The final PHB of 97.2 g/L was obtained, which corresponded to 70% of the PHB production at 1.0 vvm O(2) flow rate. This new method measures the inhibitory effect of CO(2) produced autogenously by cells through the entire fermentation process and can avoid the overestimation of CO(2) inhibition without introducing artificial CO(2) into the fermentor.  相似文献   

19.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 micro mol mol-1 CO2 (elevated CO2) in a semi-arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (psileaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and psileaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi-arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations.  相似文献   

20.
Middle-sized chambers (40 cmx 40 cmx20 cm) and an infrared gas analyzer (IRGA)were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2 m above canopy) and the forest canopy (2 m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323 ±10) and (330± 1) μmol'mo1-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as – 46 and – 61 μmol ·mol- 1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2.59 ± 1.05) μmol CO2·m-2·s-1, two times of that in autumn, (1.31±0.39) μmol CO2·m-2·'s-1. In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18 ± 0.75) μmol CO2·m- 2·s- 1 and ( 1.96 ± 0.57) tanol CO2· m- 2· s- 1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with Y = –0.864 2 + 0.310 1X, r =0.7164, P < 0.001 (n = 117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号