共查询到20条相似文献,搜索用时 15 毫秒
1.
H Ashton 《BMJ (Clinical research ed.)》1984,288(6424):1135-1140
2.
Sandeep Verma Narendra K Vaish Fritz Eckstein 《Current opinion in chemical biology》1997,1(4):532-536
Elucidation of the catalytic mechanism and structure—function relationship studies of the hammerhead ribozyme continue to be an area of intensive research. A combination of diverse approaches, such as X ray crystallography, spectral studies, chemical modifications, sequence variations and kinetic analyses, have provided valuable insight into the cleavage mechanism of this ribozyme. The hammerhead ribozyme crystal structures have provided valuable insight into conformational deformations needed to attain the catalytically active structure. Similarly, determination of ribozyme solution structure by spectroscopic analyses and the effect of divalent metal ions on RNA folding has further aided in the construction of a model for hammerhmead catalysis. 相似文献
3.
The technique of cryoenzymology has been applied to the hammerhead ribozyme in an attempt to uncover a structural rearrangement step prior to cleavage. Several cryosolvents were tested and 40% (v/v) methanol in water was found to perturb the system only minimally. This solvent allowed the measurement of ribozyme activity between 30 and -33 degrees C. Eyring plots are linear down to -27 degrees C, but a drastic reduction in activity occurs below this temperature. However, even at extremely low temperatures, the rate is still quite pH dependent, suggesting that the chemical step rather than a structural rearrangement is still rate-limiting. The nonlinearity of the Eyring plot may be the result of a transition to a cold-denatured state or a glassed state. 相似文献
4.
To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. 相似文献
5.
A series of antibiotics was tested for stimulation or inhibition of the hammerhead ribozyme cleavage reaction. Neomycin was found to be a potent inhibitor of the reaction with a Kl of 13.5 microM. Two hammerheads with well-characterized kinetics were used to determine which steps in the reaction mechanism were inhibited by neomycin. The data suggest that neomycin interacts preferentially with the enzyme-substrate complex and that this interaction leads to a reduction in the cleavage rate by stabilizing the ground state of the complex and destabilizing the transition state of the cleavage step. A comparison of neomycin with other aminoglycosides and inhibitors of hammerhead cleavage implies that the ammonium ions of neomycin are important for the antibiotic-hammerhead interaction. 相似文献
6.
Developments in the hammerhead ribozyme field during the last two years are reviewed here. New results on the specificity of this ribozyme, the mechanism of its action and on the question of metal ion involvement in the cleavage reaction are discussed. To demonstrate the potential of ribozyme technology examples of the application of this ribozyme for the inhibition of gene expression in cell culture, in animals, as well as in plant models are presented. Particular emphasis is given to critical steps in the approach, including RNA site selection, delivery, vector development and cassette construction. 相似文献
7.
Susceptibility to RNase digestion has been used to probe the conformation of the hammerhead ribozyme structure prepared from chemically synthesised RNAs. Less than about 1.5% of the total sample was digested to obtain a profile of RNase digestion sites. The observed digestion profiles confirmed the predicted base-paired secondary structure for the hammerhead. Digestion profiles of both cis and trans hammerhead structures were nearly identical which indicated that the structural interactions leading to self-cleavage were similar for both systems. Furthermore, the presence or absence of Mg2+ did not affect the RNase digestion profiles, thus indicating that Mg2+ did not modify the hammerhead structure significantly to induce self-cleavage. The base-paired stems I and II in the hammerhead structure were stable whereas stem III, which was susceptible to digestion, appeared to be an unstable region. The single strand domains separating the stems were susceptible to digestion with the exception of sites adjacent to guanosines; GL2.1 in the stem II loop and G12 in the conserved GAAAC sequence, which separates stems II and III. The absence of digestion at GL2.1 in the stem II hairpin loop of the hammerhead complex was maintained in uncomplexed ribozyme and in short oligonucleotides containing only the stem II hairpin region. In contrast, the G12 site became susceptible when the ribozyme was not complexed with its substrate. Overall the results are consistent with the role of Mg2+ in the hammerhead self-cleavage reaction being catalytic and not structural. 相似文献
8.
Probing RNA tertiary structure: interhelical crosslinking of the hammerhead ribozyme. 总被引:3,自引:0,他引:3 下载免费PDF全文
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure. 相似文献
9.
The hammerhead ribozyme undergoes a well-defined two-stage folding process induced by the sequential binding of two magnesium ions. These probably correspond to the formation of domain 2 (0-500 microM magnesium ions) and domain 1 (1-20 mM magnesium ions), respectively. In this study we have used fluorescence resonance energy transfer (FRET) to analyze the ion-induced folding of a number of variants of the hammerhead ribozyme. We find that both A14G and G8U mutations are highly destabilizing, such that these species are essentially unfolded under all conditions. Thus they appear to be blocked in the first stage of the folding process, and using uranyl-induced photocleavage we show that the core is completely accessible to this probe under these conditions. Changes at G5 do not affect the first transition but appear to provide a blockage at the second stage of folding; this is true of changes in the sugar (removal of the 2'-hydroxyl group) and base (G5C mutation, previously studied by comparative gel electrophoresis). Arrest of folding at this intermediate stage leads to a pattern of uranyl-induced photocleavage that is changed from the wild-type, but suggests a structure less open than the A14G mutant. Specific photocleavage at G5 is found only in the wild-type sequence, suggesting that this ion-binding site is formed late in the folding process. In addition to folding that is blocked at selected stages, we have also observed misfolding. Thus the A13G mutation appears to result in the ion-induced formation of a novel tertiary structure. 相似文献
10.
The effects of Co(NH(3))(6)(3+) on the hammerhead ribozyme are analyzed using several techniques, including activity measurements, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies and thermal denaturation studies. Co(NH(3))(6)(3+) efficiently displaces Mn(2+) bound to the ribozyme with an apparent dissociation constant of K(d app) = 22 +/- 4.2 microM in 500 microM Mn(2+) (0.1 M NaCl). Displacement of Mn(2+) coincides with Co(NH(3))(6)(3+) inhibition of hammerhead activity in 500 microM Mn(2+), reducing the activity of the WT hammerhead by approximately 15-fold with an inhibition constant of K(i) = 30.9 +/- 2.3 microM. A residual 'slow' activity is observed in the presence of Co(NH(3))(6)(3+) and low concentrations of Mn(2+). Under these conditions, a single Mn(2+) ion remains bound and has a low-temperature EPR spectrum identical to that observed previously for the highest affinity Mn(2+) site in the hammerhead ribozyme in 1 M NaCl, tentatively attributed to the A9/G10.1 site [Morrissey, S. R. , Horton, T. E., and DeRose, V. J. (2000) J. Am. Chem. Soc. 122, 3473-3481]. Circular dichroism and thermal denaturation experiments also reveal structural effects that accompany the observed inhibition of cleavage and Mn(2+) displacement induced by addition of Co(NH(3))(6)(3+). Taken together, the data indicate that a high-affinity Co(NH(3))(6)(3+) site is responsible for significant inhibition accompanied by structural changes in the hammerhead ribozyme. In addition, the results support a model in which at least two types of metal sites, one of which requires inner-sphere coordination, support hammerhead activity. 相似文献
11.
Structure and function of the hairpin ribozyme 总被引:18,自引:0,他引:18
Fedor MJ 《Journal of molecular biology》2000,297(2):269-291
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme. 相似文献
12.
A Peracchi 《Nucleic acids research》1999,27(14):2875-2882
The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures. 相似文献
13.
Westhof E 《Journal of molecular recognition : JMR》2007,20(1):1-3
A new crystal structure of the hammerhead ribozyme demonstrates the influence of peripheral tertiary contacts on the local conformations around the active site. This structure resolves many conflicting results obtained on reduced systems. 相似文献
14.
15.
16.
The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by an approximately 2000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2 to 3 at physiological Mg2+ ion concentrations (0.1-1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme. 相似文献
17.
The sTobRV(+) ribozyme consists of a small catalytic domain and two wing sequences(1). By changing its wing sequences, the ribozyme can cleave many different RNAs in a site-specific manner, functioning as an RNA restriction enzyme(1). Although relatively strong ligase activity is known to be associated with sTobRV(+) RNA(2,3), the sTobRV(+) ribozyme itself has been claimed to have no ligase activity. Here, we show the evidence that the sTobRV(+) ribozyme has the ability to rejoin its digestion products at low temperatures such as 4 degrees C. In contrast, little or no ligation product can be produced at 50 degrees C, the temperature giving the maximum digestion activity. The ligation reaction requires Mg++ ion. The first substrate (P1, see Fig.1), possessing 2',3' cyclic phosphate, must be RNA, but the second substrate (P2), required to have 5'OH, can be replaced by DNA counterparts, equal to or longer than dimer, thus making it possible to generate RNA-DNA chimeric molecules. We also show the resultant RNA-DNA chimera to be digestable by the sTobRV(+) ribozyme. RNase digestion indicates the phosphodiester linkage thus generated to be exclusively 3'-5'. 相似文献
18.
Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. 相似文献
19.
The hammerhead ribozyme undergoes a well-defined two-stage conformational folding process, induced by the binding of magnesium ions. In this study, we have used isothermal titration calorimetry to analyze the thermodynamics of magnesium binding and magnesium ion-induced folding of the ribozyme. Binding to the natural sequence ribozyme is strongly exothermic and can be analyzed in terms of sequential interaction at two sites with association constants K(A) = 480 and 2840 M(-1). Sequence variants of the hammerhead RNA give very different isothermal titration curves. An A14G variant that cannot undergo ion-induced folding exhibits endothermic binding. By contrast, a deoxyribose G5 variant that can undergo only the first of the two folding transitions gives a complex titration curve. However, despite these differences the ITC data for all three species can be analyzed in terms of the sequential binding of magnesium ions at two sites. While the binding affinities are all in the region of 10(3) M(-1), corresponding to free energies of Delta G degrees = -3.5 to -4 kcal mol(-1), the enthalpic and entropic contributions show much greater variation. The ITC experiments are in good agreement with earlier conformational studies of the folding of the ion-induced folding of the hammerhead ribozyme. 相似文献
20.
A Peracchi J Matulic-Adamic S Wang L Beigelman D Herschlag 《RNA (New York, N.Y.)》1998,4(11):1332-1346
We previously showed that the deleterious effects from introducing abasic nucleotides in the hammerhead ribozyme core can, in some instances, be relieved by exogenous addition of the ablated base and that the relative ability of different bases to rescue catalysis can be used to probe functional aspects of the ribozyme structure [Peracchi et al., Proc NatAcad Sci USA 93:11522]. Here we examine rescue at four additional positions, 3, 9, 12 and 13, to probe transition state interactions and to demonstrate the strengths and weaknesses of base rescue as a tool for structure-function studies. The results confirm functional roles for groups previously probed by mutagenesis, provide evidence that specific interactions observed in the ground-state X-ray structure are maintained in the transition state, and suggest formation in the transition state of other interactions that are absent in the ground state. In addition, the results suggest transition state roles for some groups that did not emerge as important in previous mutagenesis studies, presumably because base rescue has the ability to reveal interactions that are obscured by local structural redundancy in traditional mutagenesis. The base rescue results are complemented by comparing the effects of the abasic and phenyl nucleotide substitutions. The results together suggest that stacking of the bases at positions 9, 13 and 14 observed in the ground state is important for orienting other groups in the transition state. These findings add to our understanding of structure-function relationships in the hammerhead ribozyme and help delineate positions that may undergo rearrangements in the active hammerhead structure relative to the ground-state structure. Finally, the particularly efficient rescue by 2-methyladenine at position 13 relative to adenine and other bases suggests that natural base modifications may, in some instance, provide additional stability by taking advantage of hydrophobic interactions in folded RNAs. 相似文献