首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The membrane glycoproteins CD4 (L3T4) and CD8 (Lyt2) are expressed on distinct populations of mature murine T lymphocytes, and are thought to be receptors for monomorphic determinants expressed on MHC class II and class I molecules, respectively. Although they differ in their ligand specificity, it has been presumed that CD4 and CD8 perform equivalent functions in the T cells that bear them. Since activation of protein kinase C (PKC) is known to cause rapid down-regulation of various receptors, including the T cell receptor complex (TcR complex), we treated cells with phorbol 12-myristate 13-acetate (PMA), a PKC activator, to determine whether cell-surface expression of CD4 and CD8 would be similarly affected by this intracellular mediator. Brief or relatively prolonged treatment with PMA induced mature murine T cells to reduce their surface expression of the TcR complex and of CD4, but not of CD8. Similarly, PMA rapidly induced transfected L cells to down-regulate surface CD4 expression, but had no effect on surface CD8 expression. Most significantly, PMA treatment induced CD4+CD8+ immature thymocytes to rapidly reduce their surface CD4 expression, but, again, it had no immediate effect on the surface expression of CD8. These results indicate that CD4 and TcR complex cell-surface expression are both sensitive to PKC activation by brief treatment with PMA, whereas CD8 expression is not, and suggest that CD4 and CD8 surface expression levels are regulated by distinct intracellular mechanisms.  相似文献   

2.
Recent studies have highlighted the existence of discrete microdomains at the cell surface that are distinct from caveolae. The function of these microdomains remains unknown. However, recent evidence suggests that they may participate in a subset of transmembrane signaling events. In hematopoietic cells, these low density Triton-insoluble (LDTI) microdomains (also called caveolae-related domains) are dramatically enriched in signaling molecules, such as cell surface receptors (CD4 and CD55), Src family tyrosine kinases (Lyn, Lck, Hck, and Fyn), heterotrimeric G proteins, and gangliosides (GM1 and GM3). Human T lymphocytes have become a well established model system for studying the process of phorbol ester-induced down-regulation of CD4. Here, we present evidence that phorbol 12-myristate 13-acetate (PMA)-induced down-regulation of the cell surface pool of CD4 occurs within the LDTI microdomains of T cells. Localization of CD4 in LDTI microdomains was confirmed by immunoelectron microscopy. PMA-induced disruption of the CD4-Lck complex was rapid (within 5 min), and this disruption occurred within LDTI microdomains. Because PMA is an activator of protein kinase C (PKC), we next evaluated the possible roles of different PKC isoforms in this process. Our results indicate that PMA induced the rapid translocation of cytosolic PKCs to LDTI microdomains. We identified PKCalpha as the major isoform involved in this translocation event. Taken together, our results support the hypothesis that LDTI microdomains represent a functionally important plasma membrane compartment in T cells.  相似文献   

3.
4.
CD4 (T4) is a 60 kD glycoprotein expressed on a subset of T lymphocytes. CD4 augments T cell responses to suboptimal Ag stimulation. In addition, the CD4 molecule is the receptor for HIV-1. CD4 is phosphorylated on serine residues within the cytoplasmic domain and its cell surface expression is decreased in response to PMA, APC bearing the appropriate Ag or HIV infection. The kinetics of CD4 phosphorylation and modulation are similar, suggesting that the two events may be related. L3T4, the murine CD4 equivalent, is not modulated from the surface of mature, peripheral T cells in response to PMA. The difference in the ability to modulate L3T4 and CD4 in response to PMA may be due to differences between the two molecules or to differences between the cells in which they are expressed. To further define the requirements for CD4 modulation, we used retroviral vectors to transfer the cDNA for CD4 and various mutants of CD4 into two murine T cell hybridomas that express L3T4. One of these hybridomas, By155.16, does not modulate L3T4 in response to PMA and the other, 5D5.63, does modulate L3T4 in response to PMA. When expressed by these hybridomas CD4 is not modulated from the surface of By155.16 and is modulated from the surface of 5D5.63 in response to PMA. In both of these hybridomas, CD4 is phosphorylated on serine residues in response to PMA. A mutant form of CD4, CD4 delta, was constructed in which the majority of the cytoplasmic domain was deleted. When expressed in 5D5.63, CD4 delta was not modulated in response to PMA. Replacing the cytoplasmic domain of CD4 with that of the human IL-2 receptor did not reconstitute the ability of CD4 to be modulated. These results suggest that the inability to modulate L3T4 from the surface of murine peripheral T cells is due to features of the cell and not the molecule. Furthermore, the cytoplasmic domain of CD4 is required for its modulation from the cell surface in response to PMA.  相似文献   

5.
6.
Human thymocytes bearing the CD4 and/or CD8 antigens can be fractionated into cells with an immature and more mature phenotype based on their quantitative expression of the CD3 Ag (J. Immunol. 138:3108; J. Immunol. 139:1065). We show that the expression of CD4 and CD8 on thymocyte subpopulations with low CD3 (CD3L) and high CD3 (CD3H) is regulated by activation through the CD2 molecule and perturbation of the CD3-T cell receptor complex (CD3-Ti). Similar to its previously reported effects on peripheral T cells, PMA was able to induce the down-regulation of surface CD4, but not CD8, on thymocyte subpopulations. PMA could induce CD4 and CD8 phosphorylation in both CD3L and CD3H fractions. These results suggest that if changes in phosphorylation represent the mechanism by which CD4 and CD8 are able to transmit signals, this mechanism is operative in both CD3L and CD3H subpopulations. Treatment with anti-T11(2) and anti-T11(3) antibodies (CD2 activation pathway) resulted in partial down-regulation of CD4 but not CD8 surface expression on both CD3L and CD3H thymocytes. Similar treatment had no detectable effect on peripheral T cells. The down-regulation of surface CD4 induced by activation via CD2 could be inhibited by treatment of thymocytes with anti-CD3 antibodies. Treatment of thymocytes with anti-CD3 alone or following CD2 activation induced the selective down-regulation of surface CD8 within 15 minutes. These results suggest that CD2 and CD3-Ti triggering may regulate CD4 and CD8 surface expression on thymocytes. Furthermore, these results suggest that "cross-talk" between the CD2 and CD3-Ti pathway of activation may involve CD4 and CD8 molecules.  相似文献   

7.
The CD4 and CD8 molecules are rapidly phosphorylated following exposure of CD4+ or CD8+ human cytotoxic T lymphocytes (CTL) clones to B-lymphoblastoid cell lines bearing the relevant target alloantigens. Treatment of CD4+ or CD8+ CTL clones with phorbol myristate acetate (PMA), phytohemagglutinin, or mitogenic combinations of CD2-specific antibodies also resulted in CD4 or CD8 phosphorylation. Down-regulation of the surface expression of these molecules could be demonstrated in both CD4+ and CD8+ clones following exposure to the relevant alloantigen or PMA. Parallel experiments were conducted using mouse L cells in which the human CD4 or CD8 antigens were stably expressed. Exposure of these transfectants to PMA induced rapid phosphorylation of the CD4 and CD8 molecules. As in CD4+ CTL clones, rapid modulation of the CD4 antigen could be demonstrated in L cells following PMA treatment. In contrast, there was no demonstrable down-regulation of the CD8 antigen in PMA-treated CD8+ L cell transfectants. These studies demonstrate a significant differential property of the CD4 and CD8 antigens and suggest that down-regulation of the CD8 antigen may require its expression in a T-cell environment and/or the association of CD8 with the T-cell receptor or other T cell-specific molecules.  相似文献   

8.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

9.
The CD4 and CD8 molecules play an important role in the stimulation of T cells and in the process of thymic education. Most mature T cells express the alpha beta TCR and either CD4 or CD8; however, there is a small population of alpha beta+ TCR T cells that lack both CD4 and CD8. Little is known of the biology of the CD4- CD8- (double-negative) alpha beta+ TCR T cells or the nature of the Ag to which they may respond. These cells not only represent a novel population of T cells but also provide useful biologic tools to study the roles that CD4 and CD8 play in T cell activation. In this study we have addressed two questions. Firstly, whether CD4- CD8- alpha beta+ TCR T cells have functionally active TCR and, secondly, whether CD4 or CD8 is required for the activation of T cells by bacterial enterotoxins. Six double-negative alpha beta+ TCR T cell clones, propagated from two healthy donors, were challenged with a panel of nine bacterial enterotoxins. The V alpha and V beta usage of their TCR was determined by polymerase chain reaction. All of the CD4-CD8- clones proliferated in response to at least one of the enterotoxins, in a V beta-specific manner. The proliferative response of the CD4-CD8- alpha beta+ TCR T cell clones was similar in magnitude to that exhibited by CD4+ T cell clones of known V beta expression. These data clearly show that the CD4 and CD8 molecules are not required for the activation of untransformed human T cells by bacterial enterotoxins. Furthermore, these results indicate that CD4-CD8- alpha beta+ TCR T cells, normally present in all individuals, are not functionally silent, because they can be stimulated via their TCR. Their physiologic role, like that of gamma delta T cells, remains to be elucidated.  相似文献   

10.
In our study we have used anti-CD4 mAb to investigate the cell surface association between CD4 and the Ag-specific TCR complex on mature peripheral T cells. Anti-CD4 mAb was administered in vivo and in vitro and its effects on CD4 and CD3 cell surface expression were determined. In vivo, anti-CD4 mAb reduced cell surface expression of its ligand, CD4, and secondarily also reduced cell surface expression of CD3/TCR on CD4+ splenic T cells. In vitro, multivalent cross-linking of CD4 by anti-CD4 mAb and either FcR+ cells or anti-Ig mAb also resulted in decreased surface expression of CD4 and specific comodulation of CD3/TCR. The secondary reduction in cell surface CD3/TCR expression induced by CD4 cross-linking could be pharmacologically disrupted by high doses of PMA, indicating that the comodulation of CD3 with CD4 was dependent upon intracellular mediators, possibly including protein kinase C. These results demonstrate that, in the presence of anti-CD4 mAb, CD4 is functionally associated with the CD3/TCR complex, and that this association is dependent upon the activity of intracellular mediators. Such intracellular mediators might induce the coordinate down-modulation of physically unassociated CD4 and CD3/TCR molecules, or, alternatively, might promote a physical interaction between CD4 and CD3/TCR molecules.  相似文献   

11.
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.  相似文献   

12.
13.
We investigated interactions between CD4+ T cells and dendritic cells (DC) necessary for presentation of exogenous Ag by DC to CD8+ T cells. CD4+ T cells responding to their cognate Ag presented by MHC class II molecules of DC were necessary for induction of CD8+ T cell responses to MHC class I-associated Ag, but their ability to do so depended on the manner in which class II-peptide complexes were formed. DC derived from short-term mouse bone marrow culture efficiently took up Ag encapsulated in IgG FcR-targeted liposomes and stimulated CD4+ T cell responses to Ag-derived peptides associated with class II molecules. This CD4+ T cell-DC interaction resulted in expression by the DC of complexes of class I molecules and peptides from the Ag delivered in liposomes and permitted expression of the activation marker CD69 and cytotoxic responses by naive CD8+ T cells. However, while free peptides in solution loaded onto DC class II molecules could stimulate IL-2 production by CD4+ T cells as efficiently as peptides derived from endocytosed Ag, they could not stimulate induction of cytotoxic responses by CD8+ T cells to Ag delivered in liposomes into the same DC. Signals requiring class II molecules loaded with endocytosed Ag, but not free peptide, were inhibited by methyl-beta-cyclodextrin, which depletes cell membrane cholesterol. CD4+ T cell signals thus require class II molecules in cholesterol-rich domains of DC for induction of CD8+ T cell responses to exogenous Ag by inducing DC to process this Ag for class I presentation.  相似文献   

14.
It has been well established that T cell tolerance to self Ag occurs primarily via clonal deletion of immature thymocytes in the thymus. Evidence also exists that there are additional mechanisms operative on mature T cells for establishing and maintaining tolerance in the periphery. To follow the fate of mature Ag-specific T cells in vivo, we used female transgenic mice, which contain a large population of male H-Y Ag-specific T cells that can be identified by immunostaining with mAb directed against CD8 and the transgenic TCR. H-Y Ag was introduced into these mice by injecting Ag-bearing male lymphocytes using conditions known to induce CTL precursor response reduction. The number of Ag-reactive CD8+ transgenic T cells in the periphery started to decrease after 2 days of in vivo exposure to male Ag. Decline was maximum (up to 80% of total) by 7 days, and stayed at this level for at least 6 wk. CD4+ cells and those CD8+ cells that did not carry the transgenic TCR were not affected. Most or all of the remaining Ag-reactive CD8+ cells in the periphery were fully responsive when stimulated by male Ag in vitro. Maturation of transgenic T cells in the thymus of injected mice remained the same as that of control animals. Our data provide direct evidence that mature Ag-reactive CD8+ cells are susceptible to clonal deletion in the periphery when exposed to the Ag in vivo. These findings suggest the presence of two types of APC in the periphery: stimulatory APC (e.g., macrophages and dendritic cells) required for initiating an active immune response; and functionally deleting APC (or veto cells) capable of deleting mature T lymphocytes that recognize Ag presented on their surface. Functionally deleting APC that present self Ag to peripheral T cells may provide a fail-safe mechanism against autoreactive cells that escaped deletion during differentiation in the thymus.  相似文献   

15.
Stem cell Ag 1 and 2 (Sca-1 and Sca-2), so named due to their expression by mouse bone marrow stem cells, were evaluated for expression by populations of cells within the thymus. Immunohistochemical analysis demonstrated that Sca-1 was expressed by cells in the thymic medulla and by some subcapsular blast cells, as well as by the thymic blood vessels and capsule. Sca-2 expression, which was limited to the thymic cortex, could be associated with large cycling thymic blast cells. Both Sca-1 and Sca-2 were expressed on a sub-population of CD4-CD8- thymocytes, and this subpopulation was entirely contained within the Ly-1lo progenitor fraction of cells. Sca-1 expression by a phenotypically mature subset of CD4+CD8- thymocytes was also noted. Conversely, Sca-2 expression was observed on a phenotypically immature or nonmature subpopulation of CD4-CD8- thymocytes. MEL-14, an antibody that defines functional expression of a lymphocyte homing molecule, identified a small population of thymocytes that contained all four major thymic subsets. Sca-2 split the MEL-14hi thymocyte subset into two Sca-2+ non-mature/immature phenotype fractions and two Sca-2- mature phenotype fractions. In peripheral lymphoid organs, Sca-1 identified a sub-population of mature T lymphocytes that is predominantly CD4+CD8-, in agreement with the thymic distribution of Sca-1. Peripheral T cells of the CD4-CD8+ phenotype were predominantly Sca-1-. In contrast, Sca-2 did not appear to stain peripheral T lymphocytes, but recognized only a subset of B lymphocytes which could be localized by immunohistochemistry to germinal centers. Thus, expression of Sca-1 is observed throughout T cell ontogeny, whereas Sca-2 is expressed by some subsets of thymocytes, including at least one half of thymic blasts, but not by mature peripheral T lymphocytes.  相似文献   

16.
T cells differentiate from bone marrow-derived stem cells by expressing developmental stage-specific genes. We here searched arrays of genes that are highly expressed in mature CD4-CD8+ (CD8 single-positive (SP)) T cells but little in CD4+CD8+ (double-positive (DP)) cells by cDNA subtraction. Lunatic fringe (Lfng), a modulator of Notch signaling, was identified to be little expressed in DP cells and highly expressed in CD8SP T cell as well as in CD4-CD8- (double-negative (DN)) and mature CD4+CD8- (CD4SP) T cells. Thus, we examined whether such change of expression of Lfng plays a role in T cell development. We found that overexpression of Lfng in Jurkat T cells strengthened Notch signaling by reporter gene assay, indicating that Lfng is a positive regulator for Notch signaling in T cells. The enforced expression of Lfng in thymocytes enhanced the development of immature CD8SP cells but decreased mature CD4SP and CD8SP cells. In contrast, the down-regulation of Lfng in thymocytes suppressed DP cells development due to the defective transition from CD44+CD25- stage to subsequent stage in DN cells. The overexpression of Lfng in fetal liver-derived hemopoietic stem cells enhanced T cell development, whereas its down-regulation suppressed it. These results suggested that the physiological high expression of Lfng in DN cells contributes to enhance T cell differentiation through strengthening Notch signaling. Shutting down the expression of Lfng in DP cells may have a physiological role in promoting DP cells differentiation toward mature SP cells.  相似文献   

17.
T cell activation via Leu-23 (CD69)   总被引:28,自引:0,他引:28  
The CD69 (Leu-23) activation Ag is a phosphorylated 28 to 32-kDa disulfide-linked homodimer that is rapidly induced after lymphocyte activation. CD69 is not present on the surface of peripheral blood resting T cells, but is constitutively expressed by CD3bright thymocytes. Activation of protein kinase C (PKC) by stimulation of the TCR/CD3 or by phorbol esters directly induces CD69 expression on T cells. In the attempt to elucidate the function of CD69 we investigated the ability of the CD69 glycoprotein to transmit an activation signal. Cross-linking of CD69 by mAb induced a prolonged elevation of intracellular [Ca2+], mostly due to an influx of extracellular Ca2+. This signal alone was unable to effectively activate PKC. When PKC was simultaneously activated by PMA, stimulation of CD69 induced IL-2 and IFN-gamma gene expression, enhancement of CD25 expression, and ultimately IL-2-dependent T cell proliferation. Both CD4+ and CD8+ peripheral T cells responded to CD69-mediated activation. Stimulation of CD69 induced proliferation of thymocytes as well as peripheral T cells, but both required independent PKC activation by PMA. Cyclosporin A, which does not prevent PKC-induced CD69 expression, completely suppressed CD69-induced IL-2 and IFN-gamma gene expression. Although the signal delivered by the CD69 initiates T cell proliferation, it is unable to trigger cytotoxicity programs in CD69+-activated T cells or T cell clones.  相似文献   

18.
The C1.7 Ag is a surface marker previously shown to be expressed on all NK cells and on a subset of CD8+ T cells. We report in this study that C1.7 Ag expression on peripheral blood-derived CD8+ T cells overlaps with activation markers S6F1high and CD29high and is reciprocally expressed with CD62L. C1.7 Ag expression can be induced in vitro on CD8+ T cells by anti-CD3 cross-linking, suggesting that C1.7 Ag is activation dependent. In contrast to NK cells, C1.7 Ag does not signal on CD8+ T cells, nor does it induce redirected lysis upon ligation. The proportion of C1.7 Ag+CD8+ T cells is increased in HIV-infected patients compared with healthy donors. In 69 HIV-infected patients, we observed a significant inverse correlation between the percentage of C1.7 Ag-expressing CD8+ T cells and the absolute CD4+ T cell count. Two-year clinical follow-up of patients with initial CD4+ T cell count of >400 cells/mm3 and a normal proportion of C1.7 Ag+CD8+ T cells revealed that these patients were clinically stable with minimal HIV-associated symptoms. In contrast, 10 of 12 patients with CD4+ T cell counts of >400 cells/mm3 and an elevated proportion of C1.7 Ag+CD8+ T cells were symptomatic. ANOVA analysis of patients indicates that C1.7 Ag is a better predictor of disease progression than CD4 count. Overall, our findings indicate that C1.7 Ag is the first described marker for activated/memory CD8+ T cells and a useful parameter for evaluating the level of CD8+ T cell activation in vivo.  相似文献   

19.
Murine T cell surface antigens, CD4 and CD8 are phosphorylated in response to phorbol 12-myristate 13-acetate, a protein kinase C activator, but not phosphorylated after concanavalin A, Ca2+ ionophore or dibutyryl-cAMP treatment. We examined the cell surface expression of both antigens and show that surface CD4 on CD4+CD8+ and CD4+CD8- thymocytes is rapidly decreased after PMA treatment, while CD8 expression is unaffected. Prolonged PMA treatment, which down-regulates protein kinase C, allows CD4 reexpression only in the CD4+CD8- population, suggesting that different mechanisms of cell surface antigen expression are operating in the two thymocyte subpopulations.  相似文献   

20.
This study examines the potential mechanism(s) responsible for the defective clonability of CD8+ T lymphocytes in patients with AIDS. By the combined use of one- and two-color fluorescence cytofluorometry we have shown an increase in the number of circulating DR+ cells due to the expression of DR on a relatively large proportion of T lymphocytes (one-third of CD3+ cells), the majority of them belonging to the CD8+ subset. In addition, the majority of CD8+DR+ cells in AIDS patients did not express CD25 Ag (the receptor for IL-2), a surface marker generally expressed on normal activated T lymphocytes. Sorted CD8+DR+ and CD8+DR- cell populations were analyzed comparatively for their ability to proliferate in response to different stimuli, including anti-CD3, anti-CD2, alone or in combination with anti-CD28 mAb and mitogens such as PHA, alone or in combination with PMA. We have demonstrated that CD8+DR+ cells were severely defective in their proliferative response to triggering via these major pathways of T cell activation even when an exogenous source of IL-2 or IL-4 was added to the microcultures 24 h after initiating the cultures. In contrast, CD8+DR- cells showed a significant proliferation in response to the different stimuli and the proliferative response was strongly enhanced by the addition of IL-2 or IL-4. At the end of the stimulation period CD8+DR+ and CD8+DR- proliferating populations were analyzed for CD25 Ag expression. Only 1 to 10% of CD8+DR+ cells expressed CD25 antigen compared with 40 to 50% of CD8+DR- cells. The proliferative defect of CD8+DR+ cells was further confirmed in experiments performed at the clonal level. The analysis of the frequency of proliferating T lymphocyte-precursors in both CD8+DR+ and CD8+DR- subsets showed that the defective clonogenic potential of CD8+ cells in AIDS patients could be in large part ascribed to CD8+DR+ cells. Five percent of CD8+DR+ cells showed a clonogenic potential compared to the 25% of CD8+DR- cells. Finally, we analyzed the surface expression of VLA-2 Ag, a marker of a chronic state of T cell activation, on circulating T lymphocytes. We have shown that a large proportion of CD3+DR+CD25- cells (50 to 80% in the different patients with AIDS analyzed) expressed VLA-2 Ag.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号