首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. NADP-dependent isocitrate dehydrogenase from yeast was potently inhibited by aluminum ion competitively with respect to the substrate isocitrate, and noncompetitively with the other substrate NADP. Ki value was determined to be 0.43 microM. 2. Aluminum ion acted as only a weak allosteric inhibitor of yeast NAD-dependent isocitrate dehydrogenase toward isocitrate, and as a noncompetitive inhibitor toward NAD. 3. Inhibition by aluminum ion of NADP- and NAD-isocitrate dehydrogenases can reduce the aerobic energy production in yeast, and may contribute to the biological toxicity of aluminum in ecosystems and human life.  相似文献   

2.
3.
D P Hollis 《Biochemistry》1967,6(7):2080-2087
  相似文献   

4.
The effects of methotrexate (MTX) on oxygen uptake by permeabilized HeLa cells were evaluated. MTX did not inhibit state III respiration when the oxidizable substrate was succinate, but when the substrates were 2-oxoglutarate or isocitrate the respiration decreased about 50 per cent at 1·0 mM concentration of the drug. This effect was explained by inhibition of 2-oxoglutarate and isocitrate dehydrogenases by MTX. No effect was observed on succinate dehydrogenase. An evaluation of the effects of MTX on malic enzyme activity as measured by pyruvate plus lactate production in intact cells supplied with malate showed a decrease of about 40 per cent in metabolite production using 0·4 mM MTX. HeLa cell malic enzyme, as observed for other tumour cells, is compartmentalized in mitochondria and cytosol, and is another example of a dehydrogenase inhibited by MTX. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Regulation of NAD- and NADP-dependent isocitrate dehydrogenases (NAD-ICDH, EC 1.1.1.41, and NADP-ICDH, EC 1.1.1.42) by the level of reduced and oxidized pyridine nucleotides has been investigated in pea (Pisum sativum L.) leaves. The affinities of mitochondrial and cytosolic ICDH enzymes to substrates and inhibitors were determined on partially purified preparations in forward and reverse directions. From the kinetic data, it follows that NADP(+)- and NAD(+)-dependent isocitrate dehydrogenases in mitochondria represent a system strongly responding to the intramitochondrial NADPH and NADH levels. The NADPH, NADP(+), NADH and NAD(+) concentrations were determined by subcellular fractionation of pea leaf protoplasts using membrane filtration in mitochondria and cytosol in darkness and in the light under saturating and limiting CO(2) conditions. The cytosolic NADPH/NADP ratio was about 1 and almost constant both in darkness and in the light. In mitochondria, the NADPH/NADP ratio was low in darkness (0.2) and increased in the light, reaching 3 in limiting CO(2) conditions compared to 1 in saturating CO(2). At high reduction levels of NADP and NAD observed at limiting CO(2) in the light, i.e. when photorespiratory glycine is the main mitochondrial substrate, isocitrate oxidation in mitochondria will be suppressed and citrate will be transported to the cytosol ('citrate valve'), where the cytosolic NADP-ICDH supplies 2-oxoglutarate for the photorespiratory ammonia refixation.  相似文献   

6.
7.
The activity of NAD+ and NADP+-linked aldehyde dehydrogenases has been investigated in yeast cells grown under different conditions. As occurs in other dehydrogenase reactions the NAD(P)+-linked enzyme was strongly repressed in all hypoxic conditions; nervetheless, the NADP+-linked enzyme was active. The results suggest that the NAD(P)+ aldehyde dehydrogenase is involved in the oxidation of ethanol to acetyl-CoA, and that when the pyruvate dehydrogenase complex is repressed the NADP+-linked aldehyde dehydrogenase is operative as an alternative pathway from pyruvate to acetyl-CoA: pyruvate leads to acetaldehyde leads to acetate leads to acetyl-Coa. In these conditions the supply of NADPH is advantageous to the cellular economy for biosynthetic purposes. Short term adaptation experiments suggest that the regulation of the levels of the aldehyde dehydrogenase-NAD(P)+ takes place by the de novo synthesis of the enzyme.  相似文献   

8.
R S Ehrlich  R F Colman 《Biochemistry》1989,28(5):2058-2065
The metal activator site of NADP-dependent isocitrate dehydrogenase from pig heart has been probed by using 113Cd and 25Mg NMR as well as manganese paramagnetic relaxation of nuclei in the fast-exchanging ligands alpha-ketoglutarate and adenosine 2'-monophosphate. Cadmium NMR shows that cadmium, bound to the enzyme in the presence of isocitrate, has a resonance at 9 ppm relative to cadmium perchlorate, while the free Cd-isocitrate complex has a resonance at -23 ppm. Comparison with model compounds and previously studied proteins indicates that cadmium is coordinated with six oxygen ligands. Measurements as a function of cadmium concentration give a dissociation constant of 66 microM and a dissociation rate constant of 1.5 X 10(4) s-1 at pH 7.0. 25Mg NMR demonstrates that the line width of the magnesium resonance is increased upon binding to isocitrate dehydrogenase. A further increase in line width is observed upon addition of isocitrate. Measurement of line widths as a function of temperature reveals that in the binary complex between magnesium and enzyme, exchange is the major contributor to broadening while in the ternary complex containing isocitrate, the intrinsic relaxation in the bound state is also important, suggesting an increase in the dissociation rate constant for magnesium from the ternary complex. Paramagnetic relaxation studies of nuclei of alpha-ketoglutarate, bicarbonate, and adenosine 2'-monophosphate locate the divalent metal within the active site. The results with adenosine 2'-monophosphate show that atoms in the adenosine moiety of the coenzyme are at least 8 A from the metal site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The metal activator sites of NAD+-dependent and NADP+-dependent isocitrate dehydrogenases from pig heart have been probed using 113Cd- and 25Mg-NMR. In the presence of isocitrate and ADP, a broad resonance for cadmium bound to NAD-dependent isocitrate dehydrogenase was observed ( −8 ppm) arising from exchange with isocitrate (−20 ppm) and/or ADP (27 ppm) complexes. The Cd shift with ADP suggests interaction of the metal with the nucleotide ring nitrogen. Increasing shifts with excess ADP are indicative of macrochelate formation. 25Mg-NMR demonstrates that, unlike manganese, magnesium has a similar dissociation constant (1.8 mM) from NADP-dependent isocitrate dehydrogenase as from the enzyme-isocitrate complex (1.1 mM). The extrapolated line width of bound magnesium increases from 674 Hz in the binary complex to 10 200 Hz in the ternary complex. The quadrupole coupling constant, calculated from relaxation rates, is larger in the ternary complex. indicative of greater distortion in the magnesium coordination sphere. The line widths of magnesium complexed to NAD-dependent isocitrate dehydrogenase are broader, as expected for the larger octamer. 113Cd- and 25Mg-NMR both show that the metal sites have anisotropic octahedral symmetry. 25Mg relaxation rates yield correlation times corresponding to motions of a domain with motion independent of the enzyme multimers.  相似文献   

10.
An average target size of 251 kDa has been obtained for the (Ca2+ + Mg2+)-ATPase of calmodulin-depleted erythrocyte ghosts by radiation inactivation with 16 MeV electrons. This is close to twice the size of the purified calcium-pump polypeptide. When calmodulin was included during the ATPase assay, a component of about 1 MDa appeared in addition to the activated dimer.  相似文献   

11.
R S Ehrlich  R F Colman 《Biochemistry》1985,24(20):5378-5387
The binding of coenzymes, NADP+ and NADPH, and coenzyme fragments, 2'-phosphoadenosine 5'-(diphosphoribose), adenosine 2',5'-bisphosphate, and 2'-AMP, to pig heart NADP+-dependent isocitrate dehydrogenase has been studied by proton NMR. Transferred nuclear Overhauser enhancement (NOE) between the nicotinamide 1'-ribose proton and the 2-nicotinamide ring proton indicates that the nicotinamide-ribose bond assumes an anti conformation. For all nucleotides, a nuclear Overhauser effect between the adenine 1'-ribose proton and 8-adenine ring proton is observed, suggesting a predominantly syn adenine--ribose bond conformation for the enzyme-bound nucleotides. Transferred NOE between the protons at A2 and N6 is observed for NADPH (but not NADP+), implying proximity between adenine and nicotinamide rings in a folded enzyme-bound form of NADPH. Line-width measurements on the resonances of free nucleotides exchanging with bound species indicate dissociation rates ranging from less than 7 s-1 for NADPH to approximately 1600 s-1 for adenosine 2',5'-bisphosphate. Substrate, magnesium isocitrate, increases the dissociation rate for NADPH about 10-fold but decreases the corresponding rate for phosphoadenosine diphosphoribose and adenosine 2',5'-bisphosphate about 10-fold. These effects are consistent with changes in equilibrium dissociation constants measured under similar conditions. The 1H NMR spectrum of isocitrate dehydrogenase at pH 7.5 has three narrow peaks between delta 7.85 and 7.69 that shift with changes in pH and hence arise from C-4 protons of histidines. One of those, with pK = 5.35, is perturbed by NADP+ and NADPH but not by nucleotide fragments, indicating that this histidine is in the region of the nicotinamide binding site. Observation of nuclear Overhauser effects arising from selective irradiation at delta 7.55 indicates proximity of either a nontitrating histidine or an aromatic residue to the adenine ring of all nucleotides. In addition, selective irradiation of the methyl region of the enzyme spectrum demonstrates that the adenine ring is close to methyl side chains. The substrate magnesium isocitrate produces no observable differences in these protein--nucleotide interactions. The alterations in enzyme--nucleotide conformation that result in changes in affinity in the presence of substrate must involve either small shifts in the positions of amino acid side chains or changes in groups not visible in the proton NMR spectrum.  相似文献   

12.
13.
Carbon-13 nuclear magnetic resonance spectroscopy has been used to identify sites in bacitracin which bind Cu2+ and Mn2+. Results are presented which implicate the free carboxyl groups of the aspartic and glutamic acid residues and the imidazole ring of the histidine residue as metal complexation sites between pH 6 and 8. Evidence is presented which also indicates that the thiazoline ring of bacitracin binds Mn2+. Bacitracin does not bind Cu2+ or Mn2+ at pH values of 2.5 or less.  相似文献   

14.
M Blumenstein 《Biochemistry》1975,14(22):5004-5008
31P nuclear magnetic resonance spectra of the pyrophosphate group in NAD+ and NADH were recorded in the presence of beef heart lactate dehydrogenase and rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. At high lactate dehydrogenase concentrations (60 mg/ml), two NADH resonances are observed: a slowly exchanging peak which is shifted to 1.9 ppm downfield (relative to free NADH) and a rapidly exchanging peak with a downfield shift of 0.5-0.6 ppm. At lover concentrations (15 mg/ml) only the rapidly exchanging peak is observed thus indicating that the peak observed at-1.9 ppm is due to coenzyme bound to an aggregated enzyme species. With NAD+, rapid exchange and downfield shifts are observed at both enzyme and concentrations, with shifts of about 1.5 ppm and 0.6 ppm at 60 and 15 mg/ml, respectively. In the presence of glyceraldehydephosphate dehydrogenase, the results are independent of enzyme concentration, and slow exchange and upfield shifts of 0.4-0.6 ppm occur with each coenzyme. These data indicate that the environment of the pyrophosphate group of oxidized and reduced coenzyme is the same for a given dehydrogenase, but is different in one enzyme from the other. The resonances observed with glyceraldehydephosphate dehydrogenase are broader than those observed with lactate dehydrogenase. This is indicative of either shorter relaxation times with the former enzyme, or the presence of multiple, unresolved resonances.  相似文献   

15.
31P nuclear magnetic resonance (NMR) has been used to study the 1-phosphorothioate analogues of 5-phosphoribosyl 1-diphosphate (P-Rib-PP). Comparison of the proton-decoupled spectra of 5-phosphoribosyl 1-O-(2-thiodiphosphate) (P-Rib-PP beta S) and the SP diastereomer of 5-phosphoribosyl 1-O-(1-thiodiphosphate) (P-Rib-PP alpha S) with the parent molecule revealed a characteristic large downfield chemical shift change for the resonance signal associated with the thiophosphate group (delta delta approximately 40-50 ppm) and an increase in the magnitude of the phosphate-thiophosphate spin-spin coupling constant (delta J alpha beta approximately 10 Hz). Both these changes are consistent with the observed effects of sulfur substitution on the behavior of the adenosine nucleotides, particularly ADP [Jaffe, E. K., & Cohn, M. (1978) Biochemistry 17, 652-657]. High-field 31P NMR has also been used to demonstrate the diastereomeric purity of P-Rib-PP alpha S (Sp diastereomer) and the greater lability of this analogue when compared with both P-Rib-PP beta S and P-Rib-PP. Sulfur substitution was found to cause a large decrease in the apparent pKa associated with the thiophosphate moiety of P-Rib-PP beta S (delta pKa approximately 1.4 units) and also to enhance the sensitivity of the thiophosphate chemical shift to protonation and, in particular, to Mg2+ binding, compared with P-Rib-PP. The potential application of the phosphorothioate analogues as probes of the reactions catalyzed by the phosphoribosyltransferase enzymes is discussed.  相似文献   

16.
M T Mas  R F Colman 《Biochemistry》1984,23(8):1675-1683
The interaction of the 2'-phosphate-containing nucleotides (NADP+, NADPH, 2'-phosphoadenosine 5'-diphosphoribose, and adenosine 2',5'-bisphosphate) with NADP+ -specific isocitrate dehydrogenase was studied by using 31P NMR spectroscopy. The separate resonances corresponding to free and bound nucleotides, characteristic for slow exchange of nuclei on the NMR time scale, were observed in the spectra of the enzyme (obtained in the presence of excess ligand) with NADP+ and NADPH in the absence and presence of Mg2+ and with 2'-phosphoadenosine 5'-diphosphoribose in the absence of metal or in the presence of the substrate magnesium isocitrate. The position of the 31P resonance of the bound 2'-phosphate group in these spectra is invariant (delta = 6) in the pH range 5-8, indicating that the pK of this group is much lower in the complexes with the enzyme than that (pK = 6.13) in the free nucleotides. The additional downfield shift of this resonance by 1.8 ppm beyond that (delta = 4.22) of the dianionic form of the 2'-phosphate in free nucleotides suggests interaction with a positively charged group(s) and/or distortion of P-O-P angles as the result of binding to the enzyme. A single resonance of 2'-phosphate was observed in the spectrum of the enzyme complex with 2'-phosphoadenosine 5'-diphosphoribose in the presence of Mg2+, with the chemical shift dependent on the nucleotide to enzyme ratio, characteristic for the fast exchange situation. Addition of metal does not perturb the environment of the 2'-phosphate in the complexes of NADP+ and NADPH with isocitrate dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The correct localization of oxidative enzymes using cytochemical tetrazolium methods, in which low molecular weight electron carriers such as NAD(P)H and reduced phenazine methosulphate (PMSH) are used, can be endangered by the escape of the reduced intermediates before they react to form the insoluble formazan at the true enzyme-containing sites. To investigate this phenomenon, the glucose-6-phosphate dehydrogenase reaction was studied in fixed erythrocytes which, because of their microscopic dimensions, are well-suited for studying the loss of intermediates. A mixture of active and heat-inactivated fixed erythrocytes was incubated in a PMS-supplemented medium for glucose-6-phosphate dehydrogenase. The cytophotometric histograms showed that the final formazan precipitate was equally distributed over both active and inactivated cells. When bovine serum albumin was added to the medium, all the formazan was found to be bound to this protein and the erythrocytes remained essentially unstained. The false localization in this system could be explained by an unfavourable balance between the capture of electrons carried by NADPH within the erythrocyte and the diffusion of NADPH out of the erythrocyte. The rate constant of NADPH oxidation was determined, as was also the diffusion constant of NADPH in a protein matrix. Substituting the data obtained into formulae derived from the enzyme cytochemical localization theory of Holt & O'Sullivan (1958), it was calculated that the capture reaction was highly deficient and, theoretically, less than 1% of the total amount of formazan produced was localized within the erythrocyte which explains the false localization observed. The importance of these findings for the cytochemical demonstration of NAD(P)+-dependent dehydrogenases in cells and electropherograms is briefly discussed.  相似文献   

18.
We have established a simple procedure for the in situ analysis of stereospecificity of an NAD(P)-dependent dehydrogenase for C-4 hydrogen transfer of NAD(P)H by means of glutamate racemase [EC 5.1.13] and glutamate dehydrogenase [EC 1.4.1.3]. Glutamate racemase inherently catalyzes the exchange of alpha-H of glutamate with 2H during racemization in 2H2O. When the reactions of glutamate racemase and glutamate dehydrogenase, which is pro-S specific for the C4-H transfer of NAD(P)H, are coupled in 2H2O, [4S-2H]-NAD(P)H is exclusively produced. Therefore, if 1H is fully retained at C-4 of NAD(P)+ after incubation of a reaction mixture containing both the enzymes and a dehydrogenase to be tested, the stereospecificity of the dehydrogenase is the same as that of glutamate dehydrogenase. When the C4-H of NAD(P)+ is exchanged with 2H, the enzyme to be examined is different from glutamate dehydrogenase in stereospecificity. Thus, we can readily determine the stereospecificity by 1H-NMR measurement of NAD(P)+ without isolation of the coenzymes and products.  相似文献   

19.
Carbonyl compounds such as alpha-ketoglutarate, pyruvate, oxaloacetate, butyraldehyde, acetaldehyde or acetone react with NAD or NADP to give adducts. Binding studies of adducts to dehydrogenases are performed by means of ultraviolet differential spectroscopy, circular dichroism and spectrofluorimetry. The dehydrogenases show a high degree of binding specificity toward the adducts which contain their specific oxidized substrate and their specific coenzyme. The high selectivity of the dehydrogenases for adducts is evidenced by binding studies of NAD(P)-pyruvate and NAD(P)-alpha-ketoglutarate adducts on glutamate dehydrogenase at pH 7.6 and 8.9. Evidence is presented showing that adducts bind to the active site of the enzymes.  相似文献   

20.
Among members of the fish family Cyprinidae , the existence of a diploid-tetraploid relationship is well established. The analysis of individual gene loci, using isoenzyme polymorphism as genetic markers, does not always confirm the expected gene duplication in the tetraploids. Of the markers used in this study, only the M-form of the NADP-dependent isocitrate dehydrogenase follows this expectation; the data suggest the existence of a single gene locus for the enzyme in diploids, while the observations on tetraploids were consistent with control by two distinct loci. For two other enzymes, the S-form of the NADP-dependent isocitrate dehydrogenase and sorbitol dehydrogenase, no difference seems to exist in the number of gene loci between diploids and tetraploids. A comparison between Cyprinid fish (order Ostariophysi ) and members of the order Isospondyli in which another diploid-tetraploid relationship was established, reveals that gene duplications are more frequently demonstrable within tetraploid Isospondyli than in tetraploid Cyprinidae. From this, it is concluded that polyploidization occurred earlier in evolution of Cyprinidae than of Isospondyli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号