首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate the role of exercise intensity in the effect of physical training on insulin sensitivity. The insulin tolerance test (ITT) was applied to quantify insulin sensitivity. Eighteen healthy, young, untrained men and women participated in a 4-week, five times per week, 1-h per session bicycle-ergometer training program. Training consisted of 3-min bouts of cycling interspersed with 2 min at a lower exercise intensity. Intensities were 80 and 40% of pretraining maximal power output (W(max)) in the high-intensity (HI) and 40 and 20% W(max) in the low-intensity (LI) group. The insulin sensitivity index (IS(index)) was similar in the HI and LI group before the training intervention [mean (SD) -0.1898 (0.058) and -0.1892 (0.045), respectively]. After training, the IS(index) was -0.2358 (0.051) (P = 0.005 vs pretraining) in the HI group and -0.2050 (0.035) (P = 0. 099 against pretraining) in the LI group. We conclude that improvements in insulin sensitivity are more pronounced with high-intensity training, when exercise frequency and duration are kept similar. We further conclude that the ITT is suitable for use in intervention studies.  相似文献   

2.
The purpose of the present study was to evaluate the relationship between several physical fitness parameters and eyesight divided into 3 grades in visually handicapped boys and young male adults, and to investigate the effect of mild exercise training on physical and psychic symptoms as well as cardiorespiratory fitness. Four subjects were totally blind (TB), 6 were semi-blind (SB) and 27 had amblyopia (AM). Physical fitness tests consisted of maximal oxygen uptake (Vo2max), maximal pedalling speed and power, maximal stepping rate, and isometric knee extension strength. Compared with AM and SB groups, the TB group was inferior in all physical fitness parameters. Especially, Vo2max, in TB (26 ml.kg-1.min-1) was about 56% of that in age-matched Japanese sighted subjects and was significantly low compared with the AM and SB groups. Both muscle strength and maximal pedalling power corresponded to about 50% that of the age-matched sighted group. Six SB and 4 TB students (mean = 17.7 years) were trained for 6 weeks on a bicycle ergometer at an intensity of 50% VO2max. Training was undertaken for 3 days per week and maintained for 60 min per session. After training, physical and psychic symptoms determined by the Cornell Medical Index improved significantly. These results indicate that low physical work capacity in visually handicapped boys and young male adults is due to the lack of physical activity, and that mild endurance training is effective in improving physical and psychic symptoms as well as cardiorespiratory fitness.  相似文献   

3.
To clarify the impact of vigorous physical training on in vivo insulin action and glucose metabolism independent of the intervening effects of concomitant changes in body weight and composition and residual effects of an acute exercise session, 10 lean, 10 obese, and 6 diet-controlled type II diabetic men trained for 12 wk on a cycle ergometer 4 h/wk at approximately 70% of maximal O2 uptake (VO2max) while body composition and weight were maintained by refeeding the energy expended in each training session. Before and 4-5 days after the last training session, euglycemic hyperinsulinemic (40 mU.m2.min-1) clamps were performed at a plasma glucose of 90 mg/dl, combined with indirect calorimetry. Total insulin-stimulated glucose disposal (M) was corrected for residual hepatic glucose output. Body weight, fat, and fat-free mass (FFM) did not change with training, but cardiorespiratory fitness increased by 27% in all groups. Before and after training, M was lower for the obese (5.33 +/- 0.39 mg.kg FFM-1.min-1 pretraining; 5.33 +/- 0.46 posttraining) than for the lean men (9.07 +/- 0.49 and 8.91 +/- 0.60 mg.kg FFM-1.min-1 for pretraining and posttraining, respectively) and lower for the diabetic (3.86 +/- 0.44 and 3.49 +/- 0.21) than for the obese men (P less than 0.001). Insulin sensitivity was not significantly altered by training in any group, but basal hepatic glucose production was reduced by 22% in the diabetic men. Thus, when intervening effects of the last exercise bout or body composition changes were controlled, exercise training per se leading to increased cardiorespiratory fitness had no independent impact on insulin action and did not improve the insulin resistance in obese or diabetic men.  相似文献   

4.
The aim of this study was to analyze the effects of intense exercise on brain redox status, associated with antioxidant supplementation of N-acetylcysteine (NAC), deferoxamine (DFX) or a combination of both. Seventy-two C57BL-6 adult male mice were randomly assigned to 8 groups: control, NAC, DFX, NAC plus DFX, exercise, exercise with NAC, exercise with DFX, and exercise with NAC plus DFX. They were given antioxidant supplementation, exercise training on a treadmill for 12 weeks, and sacrificed 48 h after the last exercise session. Training significantly increased (P < 0.05) soleus citrate synthase (CS) activity when compared to control. Blood lactate levels classified the exercise as intense. Exercise significantly increased (P < 0.05) oxidation of biomolecules and superoxide dismutase activity in striatum and hippocampus. Training significantly increased (P < 0.05) catalase activity in striatum. NAC and DFX supplementation significantly protected (P < 0.05) against oxidative damage. These results indicate intense exercise as oxidant and NAC and DFX as antioxidant to the hippocampus and the striatum.  相似文献   

5.
This randomized controlled study was designed to prove the hypothesis that a novel approach to high-speed interval training, based on walking on a treadmill with the use of body weight unloading (BWU), would have improved energy cost and speed of overground walking in healthy older women. Participants were randomly assigned to either the exercise group (n = 11, 79.6 +/- 3.7 yr, mean +/- SD) or the nonintervention control group (n = 11, 77.6 +/- 2.3 yr). During the first 6 wk, the exercise group performed walking interval training on the treadmill with 40% BWU at the maximal walking speed corresponding to an intensity close to heart rate at ventilatory threshold (T(vent) walking speed). Each session consisted of four sets of 5 min of walking (three 1-min periods at T(vent) walking speed, with two 1-min intervals at comfortable walking speed in between each period at T(vent) walking speed) with 1-min interval between each set. Speed was increased session by session until the end of week 6. BWU was then progressively reduced to 10% during the last 6 wk of intervention. After 12 wk, the walking energy cost per unit of distance at all self-selected overground walking speeds (slow, comfortable, and fast) was significantly reduced in the range from 18 to 21%. The exercise group showed a 13% increase in maximal walking speed and a 67% increase in mechanical power output at T(vent) after the training program. The novel "overspeed" training approach has been demonstrated to be effective in improving energy cost and speed of overground walking in healthy older women.  相似文献   

6.
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.  相似文献   

7.
Recent evidence suggests that octogenarians exhibit attenuated adaptations to training with a small increase in peak O2 consumption (VO2) that is mediated by a modest improvement in cardiac output without an increase in arteriovenous O2 content difference. This study was designed to determine whether diminished increases in peak VO2 and cardiac output in the octogenarians are associated with absence of left ventricular and arterial adaptations to exercise training. We studied 22 octogenarians (81.9 +/- 3.7 yr, mean +/- SD) randomly assigned a group that exercised at an intensity of 82.5 +/- 5% of peak heart rate for 9 mo and 14 (age 83.1 +/- 4.1) assigned to a control group. Peak VO2 increased 12% in the exercise group but decreased slightly (-7%) in the controls. The exercise group demonstrated significant but small decreases in the heart rate (6%, P = 0.002) and the rate-pressure product (9%, P = 0.004) during submaximal exercise at an absolute work rate. Training induced no significant changes in the left ventricular size, geometry (wall thickness-to-radius ratio), mass, and function assessed with two-dimensional echocardiography or in arterial stiffness evaluated with applanation tonometry. Data suggest that the absence of cardiac and arterial adaptations may in part account for the limited gain in aerobic capacity in response to training in the octogenarians.  相似文献   

8.
We investigated heredity-independent effects of increased physical activity and aerobic fitness on skeletal muscle free fatty acid (FFA) uptake, perfusion, and their heterogeneity at rest and during exercise. Also, the relationship between local skeletal muscle FFA uptake and perfusion was studied. Nine young adult male monozygotic twin pairs with significant difference in physical activity [229 min (SD 156) average time spent for conditioning exercise per week in more and 98 min (SD 71) in less active twins, P = 0.013] and aerobic fitness [18% (SD 10) difference in maximum O2 uptake] between brothers were studied using positron emission tomography. Submaximal knee-extension exercise increased perfusion, FFA uptake, and oxygen uptake in quadriceps femoris muscles 6-10 times compared with resting values (P < 0.001). More active twins tended to utilize more oxygen, while no differences were found in muscle perfusion or FFA uptake between groups. Mean perfusion and FFA uptake correlated strongly at a whole muscle level, both at rest (r = 0.97, P = 0.03 in more and r = 0.98, P = 0.02 in less active twins) and during exercise (r = 0.99, P = 0.01 and r = 0.94, P = 0.06), but at the voxel level (87 mm3) correlation was only moderate during exercise [r = 0.73 (SD 0.08) vs. r = 0.74 (SD 0.10), P = 0.92] and weak at rest [r = 0.28 (SD 0.13) vs. r = 0.33 (SD 0.21), P = 0.58]. Exercise decreased both perfusion and FFA uptake heterogeneity within the muscles (P < 0.001) similarly in both groups. In conclusion, long-term history of moderately increased physical activity tends to enhance muscle oxidative metabolism, but it does not have any significant influence on the FFA uptake or perfusion rates or their heterogeneity in skeletal muscle. Submaximal knee-extension exercise decreases heterogeneity of muscle FFA uptake and perfusion and improves matching between local muscle perfusion and FFA uptake. Thus it seems that the genetic influence is more important to determine the heterogeneity of perfusion and FFA uptake in skeletal muscle than exercise training.  相似文献   

9.
Previous studies have demonstrated that frail octogenarians have an attenuated capacity for cardiovascular adaptations to endurance exercise training. In the present study, we determined the magnitude of cardiovascular and metabolic adaptations to high-intensity endurance exercise training in healthy, nonfrail elderly subjects. Ten subjects [8 men, 2 women, 80.3 yr (SD2.5)] completed 10-12 mo (108 exercise sessions) of a supervised endurance exercise training program consisting of 2.5 sessions/wk (SD 0.2), 58 min/session (SD 6), at an intensity of 83% (SD 5) of peak heart rate. Primary outcomes were maximal attainable aerobic power [peak aerobic capacity (Vo(2peak))]; serum lipids, oral glucose tolerance, and insulin action during a hyperglycemic clamp; body composition by dual-energy X-ray absorptiometry, and energy expenditure using doubly labeled water and indirect calorimetry. The training program resulted in an increase in Vo(2peak) of 15% (SD 7) [22.9 (SD 3.3) to 26.2 ml.kg(-1).min(-1) (SD 4.0); P < 0.0001]. Favorable lipid changes included reductions in total cholesterol (-8%; P = 0.002) and LDL cholesterol (-10%; P = 0.003), with no significant change in HDL cholesterol or triglycerides. Insulin action improved, as evidenced by a 29% increase in glucose disposal rate relative to insulin concentration during the hyperglycemic clamp. Fat mass decreased by 1.8 kg (SD 1.4) (P = 0.003); lean mass did not change. Total energy expenditure increased by 400 kcal/day because of an increase in physical activity. No change occurred in resting metabolism. In summary, healthy nonfrail octogenarians can adapt to high-intensity endurance exercise training with improvements in aerobic power, insulin action, and serum lipid and lipoprotein risk factors for coronary heart disease; however, the adaptations in aerobic power and insulin action are attenuated compared with middle-aged individuals.  相似文献   

10.
Yang CB  Wang YC  Gao Y  Geng J  Wu YH  Zhang Y  Shi F  Sun XQ 《Cytokine》2011,56(3):648-655
Cardiovascular and musculoskeletal deconditioning occurring in long-term spaceflight requires new strategies to counteract these adverse effects. We previously reported that a short-arm centrifuge produced artificial gravity (AG), together with ergometer, has an approving effect on promoting cardiovascular function. The current study sought to investigate whether the cardiac and cerebrovascular functions were maintained and improved using a strategy of AG combined with exercise training on cardiovascular function during 4-day head-down bed rest (HDBR). Twelve healthy male subjects were assigned to a control group (CONT, n=6) and an AG combined with ergometric exercise training group (CM, n=6). Simultaneously, cardiac pumping and systolic functions, cerebral blood flow were measured before, during, and after HDBR. The results showed that AG combined with ergometric exercise caused an increase trend of number of tolerance, however, there was no significant difference between the two groups. After 4-day HDBR in the CONT group, heart rate increased significantly (59±6 vs 66±7 beats/min), while stroke volume (98±12 vs 68±13 mL) and cardiac output (6±1 vs 4±1 L/min) decreased significantly (p<0.05). All subjects had similar drops on cerebral vascular function. Volume regulating hormone aldosterone increased in both groups (by 119.9% in CONT group and 112.8% in the CM group), but only in the CONT group there were a significant changes (p<0.05). Angiotensin II was significantly increased by 140.5% after 4-day HDBR in the CONT group (p<0.05), while no significant changes were observed in the CM group. These results indicated that artificial gravity with ergometric exercise successfully eliminated changes induced by simulated weightlessness in heart rate, volume regulating hormones, and cardiac pumping function and partially maintained cardiac systolic function. Hence, a daily 1h alternating +1.0 and +2.0 Gz with 40 W exercise training appear to be an effective countermeasure against cardiac deconditioning.  相似文献   

11.
Impaired mitochondrial function and structure and intramyocellular lipid (IMCL) accumulation have been associated with obesity and Type 2 diabetes. We examined whether endurance exercise training and sex influenced IMCL and mitochondrial morphology using electron microscopy, whole-body substrate use, and mitochondrial enzyme activity. Untrained men (n = 5) and women (n = 7) were tested before and after 7 wk of endurance exercise training. Testing included 90 min of cycle ergometry at 60% Vo(2 peak) with preexercise muscle biopsies analyzed for IMCL and mitochondrial size/area using electron microscopy and short-chain beta-hydroxyacyl-CoA dehydrogenase (SCHAD) and citrate synthase (CS) enzyme activity. Training increased the mean lipid area density (P = 0.090), the number of IMCL droplets (P = 0.055), the number of IMCL droplets in contact with mitochondria (P = 0.010), the total mitochondrial area (P < 0.001), and the size of individual mitochondrial fragments (P = 0.006). Women had higher mean lipid area density (P = 0.030) and number of IMCL droplets (P = 0.002) before and after training, but higher individual IMCL area only before training (P = 0.013), compared with men. Women oxidized more fat (P = 0.027) and less carbohydrate (P = 0.032) throughout the study. Training increased Vo(2 peak) (P < 0.001), %fat oxidation (P = 0.018), SCHAD activity (P = 0.003), and CS activity (P = 0.042). In summary, endurance exercise training increased IMCL area density due to an increase in the number of lipid droplets, whereas the increase in total mitochondrial area was due to an increase in the size of individual mitochondrial fragments. In addition, women have higher IMCL content compared with men due mainly to a greater number of individual droplets. Finally, endurance exercise training increased the proportion of IMCL in physical contact with mitochondria.  相似文献   

12.
Ten healthy young men (21.0 +/- 1.5 yr, 1.79 +/- 0.1 m, 82.7 +/- 14.7 kg, means +/- SD) participated in 8 wk of intense unilateral resistance training (knee extension exercise) such that one leg was trained (T) and the other acted as an untrained (UT) control. After the 8 wk of unilateral training, infusions of L-[ring-d(5)]phenylalanine, L-[ring-(13)C(6)]phenylalanine, and d(3)-alpha-ketoisocaproic acid were used to measure mixed muscle protein synthesis in the T and UT legs by the direct incorporation method [fractional synthetic rate (FSR)]. Protein synthesis was determined at rest as well as 4 h and 28 h after an acute bout of resistance exercise performed at the same intensity relative to the gain in single repetition maximum before and after training. Training increased mean muscle fiber cross-sectional area only in the T leg (type I: 16 +/- 10%; type II: 20 +/- 19%, P < 0.05). Acute resistance exercise increased muscle protein FSR in both legs at 4 h (T: 162 +/- 76%; UT: 108 +/- 62%, P < 0.01 vs. rest) with the increase in the T leg being significantly higher than in the UT leg at this time (P < 0.01). At 28 h postexercise, FSR in the T leg had returned to resting levels; however, the rate of protein synthesis in the UT leg remained elevated above resting (70 +/- 49%, P < 0.01). We conclude that resistance training attenuates the protein synthetic response to acute resistance exercise, despite higher initial increases in FSR, by shortening the duration for which protein synthesis is elevated.  相似文献   

13.
Previous studies have shown that low-intensity resistance training with restricted muscular venous blood flow (Kaatsu) causes muscle hypertrophy and strength gain. To investigate the effects of daily physical activity combined with Kaatsu, we examined the acute and chronic effects of walk training with and without Kaatsu on MRI-measured muscle size and maximum dynamic (one repetition maximum) and isometric strength, along with blood hormonal parameters. Nine men performed Kaatsu-walk training, and nine men performed walk training alone (control-walk). Training was conducted two times a day, 6 days/wk, for 3 wk using five sets of 2-min bouts (treadmill speed at 50 m/min), with a 1-min rest between bouts. Mean oxygen uptake during Kaatsu-walk and control-walk exercise was 19.5 (SD 3.6) and 17.2 % (SD 3.1) of treadmill-determined maximum oxygen uptake, respectively. Serum growth hormone was elevated (P < 0.01) after acute Kaatsu-walk exercise but not in control-walk exercise. MRI-measured thigh muscle cross-sectional area and muscle volume increased by 4-7%, and one repetition maximum and maximum isometric strength increased by 8-10% in the Kaatsu-walk group. There was no change in muscle size and dynamic and isometric strength in the control-walk group. Indicators of muscle damage (creatine kinase and myoglobin) and resting anabolic hormones did not change in both groups. The results suggest that the combination of leg muscle blood flow restriction with slow-walk training induces muscle hypertrophy and strength gain, despite the minimal level of exercise intensity. Kaatsu-walk training may be a potentially useful method for promoting muscle hypertrophy, covering a wide range of the population, including the frail and elderly.  相似文献   

14.
Our purpose was to elucidate effects of acute exercise and training on blood lipids-lipoproteins, and high-sensitivity C-reactive protein (hsCRP) in overweight/obese men (n = 10) and women (n = 8); age, BMI, body fat percentage, and VO(2)max were (mean ± SEM): 45 ± 2.5 years, 31.9 ± 1.4 kg·m(-2), 41.1 ± 1.5%, and 25.2 ± 1.3 mlO(2)·kg(-1)·min(-1). Before exercise training subjects performed an acute exercise session on a treadmill (70% VO(2)max, 400 kcal energy expenditure), followed by 12 weeks of endurance exercise training (land-based or aquatic-based treadmill): 3 sessions·week(-1), progressing to 500 kcal·session(-1) during which subjects maintained accustomed dietary habits. After training, the acute exercise session was repeated. Blood samples, obtained immediately before and 24 h after acute exercise sessions, were analyzed for serum lipids, lipoproteins, and hsCRP adjusted for plasma volume shifts. Exercise training increased VO(2)max (+3.67 mlO(2)·kg(-1)·min(-1), P < 0.001) and reduced body weight (-2.7 kg, P < 0.01). Training increased high-density lipoprotein (HDL) and HDL(2b)-cholesterol (HDL-C) concentrations (+3.7 and +2.4 mg·dl(-1), P < 0.05) and particle numbers (+588 and +206 nmol·l(-1), P < 0.05) in men. In women despite no change in total HDL-C, subfractions shifted from HDL(3)-C (-3.2, P < 0.01) to HDL(2b)-C (+3.5, P < 0.05) and HDL(2a)-C (+2.2 mg·dl(-1), P < 0.05), with increased HDL(2b) particle number (+313 nmol·l(-1), P < 0.05). Training reduced LDL(3) concentration and particle number in women (-1.6 mg·dl(-1) and -16 nmol·l(-1), P < 0.05). Acute exercise reduced the total cholesterol (TC): HDL-C ratio in men (-0.16, P < 0.01) and increased hsCRP in all subjects (+0.05 mg·dl(-1), P < 0.05), regardless of training. Training did not affect acute exercise responses. Our data support the efficacy of endurance training, without dietary intervention, to elicit beneficial changes in blood lipids-lipoproteins in obese men and women.  相似文献   

15.
Cuddy, JS, Slivka, DR, Hailes, WS, and Ruby, BC. Factors of trainability and predictability associated with military physical fitness test success. J Strength Cond Res 25(12): 3486-3494, 2011-The purpose of this study was to determine the trainability of college-aged men using varied training programs and to assess factors associated with successfully passing a Special Operations Forces (SOF) physical fitness test (PFT). One hundred thirty-five male subjects were stratified into 3 training groups (run focused, calisthenic focused, or combined run and calisthenic) and were trained 3 times·per week for 12 weeks. Body composition and accelerometer activity patterns were measured pretraining and posttraining. The PFT performance (pull-ups, sit-ups, push-ups, and 1.5-mile run time) was measured weekly throughout the study period. The subjects exhibited reduced body fat (18.4 ± 7.7 to 16.9 ± 7.3), increased fat-free mass (66.1 ± 8.2 to 67.4 ± 7.9), reduced fat mass (15.8 ± 9.2 to 14.6 ± 8.9) from pretraining to posttraining, respectively (p < 0.05). All groups improved in each component of PFT performance with training (p < 0.05). There was a significant 20 ± 35% increase in 6-day average daily activity for the run-focused training group from pretraining and posttraining. The key indicators of a candidate's potential to successfully reach SOF PFT standards (in 12 weeks) were determined to be as follows: enter the pipeline being able to run 2.4 km in ≤10:41 minutes, have a body fat percentage of ≤12.9%, and participate in a minimum of 30 min·d of vigorous physical activity. Training an individual's relative run or calisthenic deficiency did not prove to be a better training approach compared with a program that emphasizes training both running and calisthenic activities.  相似文献   

16.
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. The ability of the myocardium to perform external work is a critical aspect of ventricular function, but previous studies of myocardial adaptation to exercise training have been limited to measurements of isometric tension or unloaded shortening velocity, conditions in which work output is zero. We measured force-velocity properties in single permeabilized myocyte preparations to determine the effect of exercise training on loaded shortening and power output. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise trained (T) groups. T rats underwent 11 wk of progressive treadmill exercise. Myocytes were isolated from T and C hearts, chemically skinned, and attached to a force transducer. Shortening velocity was determined during loaded contractions at 15 degrees C by using a force-clamp technique. Power output was calculated by multiplying force times velocity values. We found that unloaded shortening velocity was not significantly different in T vs. C myocytes (T = 1.43 muscle lengths/s, n = 46 myocytes; C = 1.12 muscle lengths/s, n = 43 myocytes). Training increased the velocity of loaded shortening and increased peak power output (peak power = 0.16 P/P(o) x muscle length/s for T myocytes; peak power = 0.10 P/P(o) x muscle length/s for C myocytes, where P/P(o) is relative tension). We found no effect of training on myosin heavy chain isoform content. These results suggest that training alters power output properties of single cardiac myocytes and that this adaptation may improve the work capacity of the myocardium.  相似文献   

17.
Twelve healthy well-trained participants in a supervised exercise program (mean age, 41.3 yr) were compared with 12 sedentary control subjects (mean age, 38.9 yr) with physical characteristics similar to the exercised group (EG) before training. Resting echocardiograms revealed significantly lower heart rates (HR) in the EG compared with control group (CG) but no evidence for cardiac structural differences between groups. Radionuclide angiograms performed at rest and during two levels of supine cycling (HR targets: 120 and 140 beats X min-1) resulted in increases in background-corrected end-diastolic counts [EDC(bc)] and confirmed use of the Frank-Starling mechanism in the majority of subjects. Mean values (+/- SD) for ejection fraction (EF) and normalized peak systolic ejection rate (PSER) (P greater than 0.05 between groups) were the following. (Formula: see text) The results suggested that fitness training does not induce significant cardiac enlargement as apparent from measurements at rest or important changes in contractile state during exercise. Increases in exercise stroke volume with such training may be the result of an increased end-diastolic volume.  相似文献   

18.
Overweight is a worldwide increasing public health issue. Physical exercise is a useful countermeasure. Overweight individuals choose rather low exercise intensities, but especially high exercise intensities lead to higher energy expenditure and show beneficial health effects compared to lower exercise intensities. However, especially in the morning higher exercise intensities are likely to be avoided due to higher subjective effort. Bright light exposure has shown to increase maximum performance. The aim of this study was to investigate if bright light exposure can also increase self-chosen exercise intensity. We hypothesized that morning bright light exposure increases self-chosen exercise intensity of subsequent exercise through increased mood and reduced sleepiness in overweight individuals. In this randomized controlled single-blind parallel group design, 26 overweight individuals (11 males, 15 females; age 25 ± 5.7 years; body mass index 28.9 ± 2.1 kg/m2) underwent three measurement appointments. On the first appointment, subjects performed a cardiopulmonary exercise test to measure maximum oxygen uptake (VO2max). Two days later a 30-min exercise session with self-chosen exercise intensity was performed for familiarization. Then subjects were randomly allocated to bright light (~4400 lx) or a control light (~230 lx) condition. Three to seven days later, subjects were exposed to light for 30 min starting at 8:00 am, immediately followed by a 30-min exercise session with persisting light exposure. Multidimensional mood questionnaires were filled out before and after the light exposure and after the exercise session. The primary outcome was the mean power output during the exercise session and the secondary outcome the rating on the three domains (i.e. good-bad; awake-tired; calm-nervous) of the multidimensional mood questionnaire. Mean power output during the exercise session was 92 ± 19 W in bright light and 80 ± 37 W in control light, respectively. In the multivariate analysis adjusted for VO2max, the mean power output during the exercise session was 8.5 W higher (95% confidence interval ?12.7, 29.7; p = 0.416) for participants in bright light compared to control light. There were no significant differences between the groups for any of the three domains of the questionnaire at any time point. This is in contrast to longer lasting intervention studies that show positive influences on mood and suggests that bright light therapy requires repetitive sessions to improve mood in overweight individuals. In conclusion bright light exposure does not acutely increase self-chosen exercise intensity or improve mood in a 30-min exercise session starting at 08:30. However, regarding the fact that overweight is a worldwide and rapidly increasing public health issue even small increases in exercise intensity may be relevant. The trend toward superiority of bright light over control light implicates that further studies may be conducted in a larger scale.

Abbreviations: VO2max: maximum oxygen uptake; 95% CI: 95% confidence interval; SD: standard deviation  相似文献   

19.
The present study was designed to examine the acute and chronic effects of endurance treadmill training on citrate synthase (CS) gene expression and enzymatic activity in rat skeletal and cardiac muscles. Adult rats were endurance trained for 8 wk on a treadmill. They were killed 1 h (T(1), n = 8) or 48 h (T(48), n = 8) after their last bout of exercise training. Eight rats were sedentary controls (C) during the training period. CS mRNA levels and enzymatic activities of the soleus and ventricle muscles were determined. Training resulted in higher CS mRNA levels in both the soleus muscles (21% increase in T(1); 18% increase in T(48), P < 0.05) and ventricle muscles (23% increase in T(1); 17% increase in T(48), P < 0.05) when compared with the C group. The CS enzyme activities were 42 (P < 0.01) and 25% (P < 0.01) greater in the soleus muscles of T(1) and T(48) groups, respectively, when compared with that of the C group. Soleus CS enzyme activity was significantly greater in the T(1) vs. T(48) groups (P < 0.05). However, no appreciable alterations in CS enzyme activities were observed in the ventricle muscles in both training groups. These findings suggest differential responses of skeletal and cardiac muscles in CS enzymatic activity but similar responses in CS gene expression at 1 and 48 h after the last session of endurance training. Moreover, our data support the existence of an acute effect of exercise on the training-induced elevation in CS activity in rat soleus but not ventricle muscles.  相似文献   

20.
The purpose of this study was to compare 4 interval training (IT) sessions with different intensities and durations of exercise to determine the effect on mean VO?, total VO?, and duration of exertion ≥95% maximum power output (MPO), and the effects on biomarkers of fatigue such as blood-lactate concentration (BLC) and rating of perceived exertion. The subjects were 12 recreationally competitive male (n = 7, mean ± SD age = 26.2 ± 3.9 years) and female (n = 5, mean ± SD age = 27.6 ± 4.3 years) triathletes. These subjects performed 4 IT sessions on a cycle ergometer varying in intensity (90 and 100% MPO) and duration of exercise (30 seconds and 3 minutes). This study revealed that IT using 30-second duration intervals (30-30 seconds) allows the athlete to perform a longer session, with a higher total and mean VO? HR and lower BLC than 3-minute durations. Similarly, submaximal exertion at 90% of MPO also allows performing longer sessions with a higher total VO? than 100% intensity. Thus, the results of the present study suggested that to increase the total time at high intensity of exercise and total VO? of a single exercise session performed by the athlete, IT protocols of short durations (i.e., 30 seconds) and submaximal intensities (i.e., 90% MPO) should be selected. Furthermore, performing short-duration intervals may allow the athlete to complete a longer IT session with greater metabolic demands (VO?) and lower BLC than longer (i.e., 3 minutes) intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号