首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

4.
5.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5' noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

6.
7.
We have developed a real-time nucleic acid sequence based amplification (NASBA) procedure for detection of infectious salmon anaemia virus (ISAV). Primers were designed to target a 124 nucleotide region of ISAV genome segment 8. Amplification products were detected in real-time with a molecular beacon (carboxyfluorescin [FAM]-labelled and methyl-red quenched) that recognised an internal region of the target amplicon. Amplification and detection were performed at 41 degrees C for 90 min in a Corbett Research Rotorgene. The real-time NASBA assay was compared to a conventional RT-PCR for ISAV detection. From a panel of 45 clinical samples, both assays detected ISAV in the same 19 samples. Based on the detection of a synthetic RNA target, the real-time NASBA procedure was approximately 100x more sensitive than conventional RT-PCR. These results suggest that real-time NASBA may represent a useful diagnostic procedure for ISAV.  相似文献   

8.
The purpose of this study was to determine the efficacy of a nucleic acid sequence-based amplification (NASBA) method of detecting noroviruses in artificially and naturally contaminated shellfish. We used 58 fecal samples that tested positive for noroviruses with electron microscopy (EM) to develop an NASBA assay for these viruses. Oligonucleotide primers targeting the polymerase coding region were used to amplify the viral RNA in an isothermal process that resulted in the accumulation of RNA amplicons. These amplicons were detected by hybridization with digoxigenin-labeled oligonucleotide probes that were highly specific for genogroup I (GI) and genogroup II (GII) of noroviruses. The expected band of 327 bp appeared in denaturing agarose gel without any nonspecific band. The specific signal for each amplicon was obtained through Northern blotting in many repeats. All fecal samples of which 46 (79.3%) belonged to GII and 12 (20.6%) belonged to GI were positive for noroviruses by EM and by NASBA. Target RNA concentrations as low as 5 pg/ml were detected in fecal specimens using NASBA. When the assay was applied to artificially contaminated shellfish, the sensitivity to nucleic acid was 100 pg/1.5 g shellfish tissue. The potential use of this assay was also confirmed in naturally contaminated shellfish collected from different ponds in Guangzhou city of China, of which 24 (18.76%) out of 128 samples were positive for noroviruses; of these, 19 (79.6%) belonged to GII and 5 (20.4%) belonged to GI. The NASBA assay provided a more rapid and efficient way of detecting noroviruses in fecal samples and demonstrated its potential for detecting noroviruses in food and environmental samples with high specificity and sensitivity.  相似文献   

9.
10.
AIMS: To use molecular beacon based nucleic acid sequence-based amplification (NASBA) to develop a rapid, sensitive, specific detection method for norovirus (NV) genogroupII (GII). METHODS AND RESULTS: A method to detect NV GII from environmental samples using real-time NASBA was developed. This method was routinely sensitive to 100 copies of target RNA and intermittent amplification occurred with as few as 10 copies. Quantitative estimates of viral load were possible over at least four orders of magnitude. CONCLUSIONS: The NASBA method described here is a reliable and sensitive assay for the detection of NV. This method has the potential to be linked to a handheld NASBA device that would make this real-time assay a portable and inexpensive alternative to bench-top, lab-based assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The development of the real-time NASBA assay described here has resulted in a simple, rapid (<1 h), convenient testing format for NV. To our knowledge, this is the first example of a molecular beacon based NASBA assay for NV.  相似文献   

11.
A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.  相似文献   

12.
13.
14.
15.
16.
Isothermal nucleic acid sequence-based amplification (NASBA) was applied to detect Legionella 16S rRNA. The assay was originally developed as a Legionella pneumophila conventional NASBA assay with electrochemiluminescence (ECL) detection and was subsequently adapted to a L. pneumophila real-time NASBA format and a Legionella spp. real-time NASBA using molecular beacons. L. pneumophila RNA prepared from a plasmid construct was used to assess the analytical sensitivity of the assay. The sensitivity of the NASBA assay was 10 molecules of in vitro wild type L. pneumophila RNA and 0.1-1 colony-forming units (CFU) of L. pneumophila. In spiked respiratory specimens, the sensitivity of the NASBA assays was 1-10000 CFU of L. pneumophila serotype 1 depending on the background. After dilution of the nucleic acid extract prior to amplification, 1-10 CFU of L. pneumophila serotype 1 could be detected with both detection methods. Finally, 27 respiratory specimens, well characterized by culture and PCR, collected during a L. pneumophila outbreak, were tested by conventional and real-time NASBAs. All 11 PCR positive samples were positive by conventional NASBA, 9/11 and 10/11 were positive by L. pneumophila real-time NASBA and Legionella spp. real-time NASBA, respectively.  相似文献   

17.
18.
Molecular studies of human noroviruses (NoV) have been hampered by the lack of a permissive cell culture system. We have developed a sensitive and reliable mammalian cell-based assay for the human NoV GII.4 strain RNA-dependent RNA polymerase (RdRp). The assay is based on the finding that RNAs synthesized by transiently expressed RdRp can stimulate retinoic acid-inducible gene I (RIG-I)-dependent reporter luciferase production via the beta interferon promoter. Comparable activities were observed for the murine norovirus (MNV) RdRp. RdRps with mutations at divalent metal ion binding residues did not activate RIG-I signaling. Furthermore, both NoV and MNV RdRp activities were stimulated by the coexpression of their respective VPg proteins, while mutations in the putative site of nucleotide linkage on VPg abolished most of their stimulatory effects. Sequencing of the RNAs linked to VPg revealed that the cellular trans-Golgi network protein 2 (TGOLN2) mRNA was the template for VPg-primed RNA synthesis. Small interfering RNA knockdown of RNase L abolished the enhancement of signaling that occurred in the presence of VPg. Finally, the coexpression of each of the other NoV proteins revealed that p48 (also known as NS1-2) and VP1 enhanced and that VP2 reduced the RdRp activity. The assay should be useful for the dissection of the requirements for NoV RNA synthesis as well as the identification of inhibitors of the NoV RdRp.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号