首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adrenocortical cell transplantation is a powerful technique for the investigation of the regulation of adrenocortical structure and function. Some classical organ and tissue transplantation experiments suggest that the success of transplantation depends on the activity of the pituitary gland and other endocrine systems, and is therefore influenced by the host animals’ own adrenal glands. For this reason, our experiments have usually been performed on adrenalectomized animals. However, we show here that cell transplantation experiments, involving the introduction of bovine adrenocortical cells into scid mice, do produce transplant tissues in the presence of the host animals’ adrenal glands. However, the tissue that forms is small and its cells also smaller than usual. When the adrenals of such animals are removed in a second surgical procedure, the transplants show a rapid increase in steroidogenic function and a slower increase in size, over several weeks. We conclude that the initial process by which transplanted adrenocortical cells organize into a tissue structure is not affected by the presence of the host animals’ adrenal glands, but the growth of the transplants is limited until the adrenal glands are removed.  相似文献   

2.
3.
Cell transplantation provides a way to compare the regulation of cell proliferation in the same cell type in cell culture and in a vascularized tissue structure in a host animal. The cyclin-dependent kinase inhibitors p57(KIP2), p21(WAF1/CIP1/SDI1) and p27(KIP1) have been extensively studied in cell culture but their role in growth control in tissues is less well understood. In the present experiments we compared the behavior of cell cycle inhibitors in human and bovine adrenocortical cells in culture and following cell transplantation in scid mice. p57 was expressed in the majority of cells in the intact human adrenal cortex. However, double immunofluorescence showed that cells that are in the cell cycle are p57(-) adrenocortical cells, p57 and p27 levels were not affected by inhibition of growth at high cell density, whereas p21 was higher in dividing than growth-inhibited cells. However, p21 was also high in senescent adrenocortical cells. After transplantation of human adrenocortical cells in scid mice, p57 and p27 were observed in most cells in the transplant tissue. Over time the number of p21(+) cells decreased greatly in human adrenocortical cells, but not in bovine adrenocortical cells. This difference correlated with lower levels of cell division (assessed by Ki-67 or incorporation of bromodeoxyuridine) in the human cells in transplant tissues in comparison to bovine cells. The differences between human and bovine cells were observed both when cells were transplanted beneath the kidney capsule and when cells were injected subcutaneously in collagen gel. We conclude that the behavior of p57, but not p21, is consistent with a role as a physiological mediator of proliferative quiescence in the adrenal cortex. The high level of p21 in dividing adrenocortical cells in culture, and in bovine adrenocortical cells in transplant tissues, may be a response to conflicting positive and negative growth influences. Cells may enter the cell cycle under the influence of a strong positive mitogenic signal, but coexisting negative growth stimuli trigger a p21-dependent block to further progression through the cell cycle. This model suggests that bovine adrenocortical cells respond to positive growth stimuli in transplant tissues but human cells lack this response.  相似文献   

4.
Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600–3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g;P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%;P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.  相似文献   

5.
Obesity is frequently associated with malfunctions of the hypothalamus-pituitary-adrenal (HPA) axis and hyperaldosteronism, but the mechanism underlying this association remains unclear. Since the adrenal glands are embedded in adipose tissue, direct cross-talk between adipose tissue and the adrenal gland has been proposed. A previous study found that adiponectin receptor mRNA was expressed in human adrenal glands and aldosterone-producing adenoma (APA). However, the expression of adiponectin receptors in adrenal glands has not been confirmed at the protein level or in other species. Furthermore, it is unclear whether adiponectin receptors expressed in adrenal cells are functional. We found, for the first time, that adiponectin receptor (AdipoR1 and AdipoR2) mRNA and protein were expressed in mouse adrenal and adrenocortical Y-1 cells. However, adiponectin itself was not expressed in mouse adrenal or Y-1 cells. Furthermore, adiponectin acutely reduced basal levels of corticosterone and aldosterone secretion. ACTH-induced steroid secretion was also inhibited by adiponectin, and this was accompanied by a parallel change in the expression of the key genes involved in steroidogenesis. These findings indicate that adiponectin may take part in the modulation of steroidogenesis. Thus, adiponectin is likely to have physiological and/or pathophysiological significance as an endocrine regulator of adrenocortical function.  相似文献   

6.
Primary cell transplantation is currently the gold standard for cell replacement in Parkinson’s disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM) donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1) an intact piece of half an embryonic day 13 (E13) rat VM; (2) dissociated cells from half an E13 rat VM; or (3) no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson’s disease.  相似文献   

7.
Cell transplantation has potential benefits for tissue replacement in the the enhancement of tissue regeneration and as cell-mediated gene therapy for systemic diseases. The transplantation of myoblasts into skeletal muscle also allows gene transfer into cells of the host since myoblasts fuse with host fibers thereby forming hybrid myofibers. The success of myoblast transplantation can be determined by a variety of measures, such as the percentage of myoblasts that fuse, the number of hybrid myofibers formed, or the level of transgene expression. Each measure is a reflection of the fate of the transplanted cells. In order to compare different measures of transplantation efficacy, we followed the fate of transplanted myoblasts expressing the marker enzyme β-galactosidase (β-gal) in two different assays. Two weeks after transplantation, the number of hybrid myofibers was determined histochemically, whereas transgene (β-gal) expression was measured biochemically. To control for variabilities of transplantation among different animals, we obtained both measurements from each muscle by using alternate cryosections in the two assays. Within each individual muscle, both hybrid fiber number and/β-gal expression were maximal at the site of implantation and diminished in parallel with distance from the site. However, for determining the success of transplantation among groups of muscles, these two measures of efficacy yielded discordant results: the transplants with the highest number of hybrid fibers were not the transplants with the greatest β-gal activity. Such discrepancies are likely due to regional variations at the transplantation site that arise when cells are introduced into a solid tissue. These results demonstrate the importance of multiple measures of cell fate and transplantation efficacy for studies of cell trans-plantation and for the application of such studies to cell therapy and cell-mediated gene therapy.  相似文献   

8.
9.
Sympathetic ganglion tissue of 3-months- and 18-months-old Fischer-344 rats was autotransplanted into the adrenal gland in order to determine the effect of aging on the survival of grafted neurons. Adrenal cortex was chosen as the host tissue because it is well vascularized and has a high concentration of glucocorticoids, which stimulate the synthesis of catecholamines. At 4 weeks following the transplantation, the density of neurons was decreased in all transplants, but approximately the same proportion of remaining neurons showed tyrosine hydroxylase immunoreactivity as in intact ganglia. At 8 weeks, a subpopulation of large neurons showed an increased accumulation of age pigment. The heavily pigmented neurons were usually devoid of catecholamines, whereas small non-pigmented neurons frequently showed strong catecholamine histofluorescence and tyrosine hydroxylase immunoreactivity. There was no marked difference between old and young animals in the survival of transplanted neurons. The results show that the sympathetic neurons from both 3-months-and 18-months-old animals survived the autotransplantation procedure. The humoral environment of the adrenal cortex may be beneficial for the restoration of the integrity of sympathetic neurons.  相似文献   

10.
Summary Sympathetic ganglion tissue of 3-months- and 18-months-old Fischer-344 rats was autotransplanted into the adrenal gland in order to determine the effect of aging on the survival of grafted neurons. Adrenal cortex was chosen as the host tissue because it is well vascularized and has a high concentration of glucocorticoids, which stimulate the synthesis of catecholamines. At 4 weeks following the transplantation, the density of neurons was decreased in all transplants, but approximately the same proportion of remaining neurons showed tyrosine hydroxylase immunoreactivity as in intact ganglia. At 8 weeks, a subpopulation of large neurons showed an increased accumulation of age pigment. The heavily pigmented neurons were usually devoid of catecholamines, whereas small non-pigmented neurons frequently showed strong catecholamine histofluorescence and tyrosine hydroxylase immunoreactivity. There was no marked difference between old and young animals in the survival of transplanted neurons. The results show that the sympathetic neurons from both 3-months-and 18-months-old animals survived the autotransplantation procedure. The humoral environment of the adrenal cortex may be beneficial for the restoration of the integrity of sympathetic neurons.  相似文献   

11.
The interrenal (adrenal) of Ichthyophis beddomei lies on the ventral side of the kidney, distributed in four zones. It is separated from the renal tissue by a thin layer of connective tissue and contains both adrenocortical and chromaffin cells. Adrenocortical tissue constitutes a major portion of the interrenal islets; the chromaffin tissue consists of a few cells located at the peripheries of the interrenal islets. Histochemical studies demonstrate the presence of Δ53β-hydroxysteroid dehydrogenase, 17 β-hydroxysteroid dehydrogenase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, and sudanophilic lipids in the adrenocortical tissue, suggesting its steroidogenic potential. Annual histometric and histochemical studies show two peaks of interrenal activity: (1) during the breeding phase of the reproductive cycle (January and February) and (2) during the season of heavy monsoon rains (June and July) in the postbreeding phase.  相似文献   

12.
Summary Regenerated adrenocortical nodules were obtained by implanting fragments of the capsular tissue of excised adrenal glands into the musculus gracilis of rats (Belloni et al. 1990). Five months after the operation, operated rats showed a normal basal blood level of corticosterone, but a very low concentration of circulating aldosterone associated with a slightly increased plasma renin activity (PRA). Regenerated nodules were well encapsulated and some septa extended into the parenchyma from the connective-tissue capsule. The majority of parenchymal cells were similar to those of the zonae fasciculata and reticularis of the normal adrenal gland, while zona glomerulosa-like cells were exclusively located around septa (juxta-septal zone; JZ). In vitro studies demonstrated that nodules were functioning as far as glucocorticoid production was concerned, while mineralocorticoid yield was very low. Prolonged sodium restriction significantly increased PRA and plasma aldosterone concentration, and provoked a marked hypertrophy of JZ, which was due to increases in both the number and average volume of JZ cells. Accordingly, the in vitro basal production of aldosterone and other 18-hydroxylated steroids was notably enhanced. The plasma level of corticosterone, as well as zona fasciculata/reticularis-like cells and in vitro production of glucocorticoids by regenerated nodules were not affected. These findings, indicating that autotransplanted adrenocortical nodules respond to a prolonged sodium restriction similar to the normal adrenal glands, suggest that the relative deficit in mineralocorticoid production is not due to an intrinsic defect of the zona glomerulosa-like JZ, but is probably caused by the impairment of its adequate stimulation under basal conditions. The hypothesis is advanced that the lack of splanchnic nerve supply and chromaffin medullary tissue in regenerated nodules may be the cause of such an impairment.  相似文献   

13.
Regenerated adrenocortical nodules were obtained by implanting in the musculus gracilis of rats fragments of the capsular tissue of their excised adrenal glands. Five months after operation, transplanted rats showed a slightly elevated blood concentration of adrenocorticotropin (ACTH), a moderately reduced plasma level of corticosterone (PBC) and a very low concentration of circulating aldosterone (PAC). Regenerated nodules were well encapsulated, and from the connective capsule some septa dipped into the parenchyma. Subcapsular-outer (OZ) and inner (IZ) cells were similar to those of the zona fasciculata/zona reticularis (ZF/ZR) of the normal gland; juxta-septal (JZ) cells resembled those of the zona glomerulosa (ZG). Prolonged (14 days) ACTH infusion normalized PBC and caused a conspicuous hypertrophy of transplanted tissue, which was coupled with a marked hypertrophy of ZF/ZR-like OZ and IZ cells and a notable rise in the basal in vitro production of corticosterone. Conversely, ACTH infusion strikingly lowered PAC, reduced the number of ZG-like JZ cells, and decreased both basal and stimulated secretion of 18-hydroxylated steroids by transplants in vitro.  相似文献   

14.
1. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of neurons in the substantia nigra pars compacta and a striatal deficiency of dopamine. PD typically affects people in late middle age and progresses slowly. In the early stages of the disease, treatment targeting the dopaminergic network is effective. However, with disease progression, transplantation is an option for repairing and replacing missing dopaminergic neurons. 2. In this review, we evaluate the tissue grafts and cellular therapies that have and are being considered. Clinical trials were originally derived from transplants of adrenal medullary chromaffin cells and embryonic nigral dopaminergic neurons in patients with PD. 3. Recently, novel molecular and cellular treatments are being utilized in animals and these include embryonic stem cells, fetal cells from pigs, or transfected cells. In spite of new molecular techniques and some 20 years of experience, the transplantation therapy for PD has today the same problems and results as the first reports which used neural fetal tissue or adrenal grafts.  相似文献   

15.
P K?rge  S Roosson 《Endokrinologie》1975,64(2):232-238
The importance of adrenal glands in the adaptation of rats to physical exertion was studied. Exercise training, significantly increased the working ability and prevented the water accumulation in myocardial cells during acute exertion. The latter shift was characteristic of untrained animals. However, adrenalectomy abolished the benefical effect of training on working ability and myocardial adaptation to exertion. The results obtained supported the view that the effect of training is partly mediated through the improved adrenocortical function while adrenal hormones, by regulating the heart metabolism and function, significantly influenced the adaptation of rats to physical exertion.  相似文献   

16.
Adrenal ferredoxin, the iron-sulfur protein associated with cytochrome P-450 in adrenocortical mitochondria, has been localized at the light microscopic level in bovine adrenal cortex. Localization was achieved through the use of rabbit antiserum to bovine adrenal ferrodoxin in an unlabeled antibody peroxidase-antiperoxidase method. When sections of bovine adrenal glands were exposed to the adrenal ferredoxin antiserum, intense staining was observed in parenchymal cells of the three cortical zones. Staining for adrenal ferredoxin was not detected in the medullary chromaffin cells. The presence of adrenal ferredoxin in the three cortical zones was verified by electron paramagnetic resonance spectrometry. These determinations also revealed that while the zona fasciculata and the zona reticularis contained approximately equal concentrations of adrenal ferredoxin, the concentration of the iron-sulfur protein in the zona glomerulosa was considerably lower. Similar results were obtained when the levels of cytochrome P-450 were determined in the three cortical zones. These results represent the first immunohistochemical localization within an intact tissue or cell of any component of an NADPH-dependent electron transport sequence which is responsible for the reduction of cytochrome P-450.  相似文献   

17.
Nerve growth factor (NGF) has been shown to stimulate the hypothalamic-pituitary-adrenocortical (HPA) axis. Since NGF induces the release of histamine from mast cells and in consideration of the fact that histamine is an HPA axis activator, we investigated whether NGF adrenocortical stimulation is mediated by histamine. To accomplish with it, the H1 histamine antagonist promethazine and the H2 antagonists metiamide and zolantidine were used in freely-moving cannulated rats. The increase in plasma corticosterone concentration induced by histamine administration was prevented completely by promethazine pretreatment but was unaffected by the H2 antagonists. Neither H1 nor H2 antagonists affected the adrenocortical stimulation induced by NGF administration. Moreover, since mast cells are reportedly present in the rat adrenal gland and the locally released histamine mediates the release of adrenaline which, in turn, stimulates glucocorticoid synthesis and secretion, we studied the effect of NGF on basal and ACTH-stimulated corticosterone release from in vitro isolated quartered adrenal glands and collagenase-dispersed adrenal cells. The results from these in vitro experiments have indicated that NGF modified neither spontaneous nor stimulated corticosterone release. Altogether these observations suggest that endogenous histamine is unlikely to be involved in HPA axis stimulation by NGF and reinforce the previously proposed concept of an active participation of NGF in the control of adrenocortical activity.  相似文献   

18.
Summary A method of cultivation involving both repeated trypsinisations (at room temperature) and explantation of the tissue fragments on polythene discs has been shown to be apt to the growth in vitro of rat adult decapsulated adreno-cortical tissue. This is the first time that the successful cultivation of such a tissue is reported. The technique and its applications are discussed.The effects of 1–24 corticotrophin (ACTH1–24) on the rat adult adrenal cultures have been examined by both electron microscopy and autoradiography. Zona fasciculata and reticularis cells grown in the absence of ACTH for long terms (15–16 days) survive and proliferate as dedifferentiated elements. If ACTH1–24 is added to the cultures, adrenocortical cells will, within 2 days, simultaneously increase their proliferation rate and differentiate. After 7 days of treatment, cortical cells exhibit not only fully differentiated but even hypertrophic morphologic features. Significant stimulations of adrenal DNA, RNA and gross protein synthesis have been found to take place at different times after the starting of the ACTH1–24 treatment. These data are discussed in relation to the findings previously reported in literature.Rat adult adrenal gland tissue cultures are proposed as a non-previously available tool for investigations into the physiopathology of the adrenal cells to be carried out in a carefully controlled environment.A Preliminary report on part of this material was given at the annual meeting of the Société Française de Microscopie Elécronique, Nantes, May 1972.Authors wish to thank Drs. P. G. Andreis and A. S. Belloni for their skilful assistance in the autoradiographic experiments. Thanks are also due to Mr. G. Gottardo for his excellent technical help in electron microscopic work. This work was partly supported by a contract with the CNR-Italy (No 69.0172/115.3439).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号