首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exon repression by polypyrimidine tract binding protein   总被引:6,自引:0,他引:6       下载免费PDF全文
Polypyrimidine tract binding protein (PTB) is known to silence the splicing of many alternative exons. However, exons repressed by PTB are affected by other RNA regulatory elements and proteins. This makes it difficult to dissect the structure of the pre-mRNP complexes that silence splicing, and to understand the role of PTB in this process. We determined the minimal requirements for PTB-mediated splicing repression. We find that the minimal sequence for high affinity binding by PTB is relatively large, containing multiple polypyrimidine elements. Analytical ultracentrifugation and proteolysis mapping of RNA cross-links on the PTB protein indicate that most PTB exists as a monomer, and that a polypyrimidine element extends across multiple PTB domains. The high affinity site is bound initially by a PTB monomer and at higher concentrations by additional PTB molecules. Significantly, this site is not sufficient for splicing repression when placed in the 3' splice site of a strong test exon. Efficient repression requires a second binding site within the exon itself or downstream from it. This second site enhances formation of a multimeric PTB complex, even if it does not bind well to PTB on its own. These experiments show that PTB can be sufficient to repress splicing of an otherwise constitutive exon, without binding sites for additional regulatory proteins and without competing with U2AF binding. The minimal complex mediating splicing repression by PTB requires two binding sites bound by an oligomeric PTB complex.  相似文献   

2.
The polypyrimidine tract binding (PTB) protein is a potent regulator of alternative mRNA splicing. It also participates in other essential cellular functions, including translation initiation and polyadenylation. Several published reports have suggested that the protein forms a dimer in solution, a feature that has been widely incorporated into mechanistic models of protein function. However, recent studies have provided indications that full-length PTB is a monomer. Here we present new biophysical and biochemical evidence supporting the monomeric status of the protein. By use of blue-native polyacrylamide gel electrophoresis and size-exclusion chromatography, PTB was observed as a single molecular species under native reducing environments, though in oxidizing conditions, a larger protein species was also detected. Further analyses of wild-type and mutant PTB molecules with SDS-PAGE and time-of-flight electrospray ionization mass spectroscopy confirmed these observations. They also identified the single reduced species as monomeric PTB and the higher-molecular-weight nonreduced species as disulphide-linked PTB dimer mediated by Cys23. Our results indicate that the use of oxidizing environments in previous studies is likely to have contributed to the mis-assignment of PTB as a dimer. Although purified PTB may form disulphide-linked dimers under these conditions, in the reducing intracellular environment the protein will be monomeric. These findings have implications for the construction of models of PTB function in regulating mRNA metabolism.  相似文献   

3.
The polypyrimidine tract binding protein (PTB) is an RNA binding protein that normally functions as a regulator of alternative splicing but can also be recruited to stimulate translation initiation by certain picornaviruses. High-resolution structures of the four RNA recognition motifs (RRMs) that make up PTB have previously been determined by NMR. Here, we have used small-angle X-ray scattering to determine the low-resolution structure of the entire protein. Scattering patterns from full-length PTB and deletion mutants containing all possible sequential combinations of the RRMs were collected. All constructs were found to be monomeric in solution. Ab initio analysis and rigid-body modeling utilizing the high-resolution models of the RRMs yielded a consistent low-resolution model of the spatial organization of domains in PTB. Domains 3 and 4 were found to be in close contact, whereas domains 2 and especially 1 had loose contacts with the rest of the protein.  相似文献   

4.
Polypyrimdine tract binding protein (PTB) is a regulator of alternative splicing, mRNA 3' end formation, mRNA stability and localization, and IRES-mediated translation. Transient overexpression of PTB can influence alternative splicing, sometimes resulting in nonphysiological splicing patterns. Here, we show that alternative skipping of PTB exon 11 leads to an mRNA that is removed by NMD and that this pathway consumes at least 20% of the PTB mRNA in HeLa cells. We also show that exon 11 skipping is itself promoted by PTB in a negative feedback loop. This autoregulation may serve both to prevent disruptively high levels of PTB expression and to restore nuclear levels when PTB is mobilized to the cytoplasm. Our findings suggest that alternative splicing can act not only to generate protein isoform diversity but also to quantitatively control gene expression and complement recent bioinformatic analyses, indicating a high prevalence of human alternative splicing leading to NMD.  相似文献   

5.
The polypyrimidine tract binding protein (PTB) is involved in many physiological processes, including alternative splicing, internal ribosomal entry side (IRES)-mediated initiation of translation, and polyadenylation, as well as in ensuring mRNA stability. However, the role of PTB in these processes is not fully understood, and this has motivated us to undertake a computational study of the protein. PTB RNA binding domains (RBDs) 3 and 4 and their complexes with oligopyrimidine RNAs were simulated using the GROMOS simulation software using the GROMOS 45A4 force field. First, the stability and fluctuations of the tertiary fold and of the secondary structural elements in individual domains, the combined RBD34 domain, and their complexes with RNA were studied. Second, the simulation results were validated against the experimental NMR NOE data. The analysis of hydrogen bonding patterns, salt bridge networks, and stacking interactions of the RNA to the binding pockets of the protein domains showed that binding is not sequence-specific and that many RNA fragments can bind to them successfully. Further calculations of the relative free energy of binding for different polypyrimidine sequences were carried out using the thermodynamic integration (TI) and single-step perturbation (SSP) methods. It is was not possible to calculate the relative free energies with high accuracy, but the obtained results do give qualitative insights into PTB's affinity for different RNA sequences. Furthermore, the low-energy conformations of the complexes that were found provided additional information about the mechanism of binding.  相似文献   

6.
7.
The alpha-actinin gene has a pair of alternatively spliced exons. The smooth muscle (SM) exon is repressed in most cell types by polypyrimidine tract binding protein (PTB). CELF (CUG-BP and ETR3-like factors) family proteins, splicing regulators whose activities are altered in myotonic dystrophy, were found to coordinately regulate selection of the two alpha-actinin exons. CUG-BP and ETR3 activated the SM exon, and along with CELF4 they were also able to repress splicing of the NM (nonmuscle) exon both in vivo and in vitro. Activation of SM exon splicing was associated with displacement of PTB from the polypyrimidine tract by binding of CUG-BP at adjacent sites. Our data provides direct evidence for the activity of CELF proteins as both activators and repressors of splicing within a single-model system of alternative splicing, and suggests a model whereby alpha-actinin alternative splicing is regulated by synergistic and antagonistic interactions between members of the CELF and PTB families.  相似文献   

8.
Cancer-associated retinopathy (CAR) is a rare form of retinal degeneration and also one of the paraneoplastic neurologic disorders. Sera of CAR patients usually contain high titers of antibodies against retinal proteins, and CAR is believed to be an autoimmune disease. Using serum from a CAR patient as a molecular probe, a homologue of the polypyrimidine tract-binding protein (PTB) was isolated from a cDNA library of rat neonatal retina. This homologue, named PTB-like protein (PTBLP), encodes a 532 amino acid residue protein and has 73.5 and 68.8% homology with PTB and with a regulator of differentiation 1, respectively. Functional domains in the PTB, such as nuclear localization signals and four RNA recognition motifs (RRMs), were highly conserved. The expression of PTBLP mRNA was observed in the retina and brain but not in liver, kidney, spleen, or lung. The expression of PTBLP protein in rat retina was distributed in most of the cells in the ganglion cell layer and some cells in the inner nuclear layer. The PTBLP protein was localized in the nuclei of these cells. These results suggest that PTBLP is a new member of the PTB gene family and a neuron-specific homologue.  相似文献   

9.
The polypyrimidine tract binding protein (PTB), a homodimer that contains four RRM-type RNA binding domains per monomer, plays important roles in both the regulation of alternative splicing and the stimulation of translation initiation as directed by the internal ribosome entry sites of certain picornaviruses. We have used chemical shift mapping experiments to probe the interactions between PTB-34, a recombinant fragment that contains the third and fourth RRM domains of the protein, and a number of short pyrimidine-rich RNA oligonucleotides. The results confirm that the RNAs interact primarily with the β-sheet surface of PTB-34, but also reveal roles for the two long flexible linkers within the protein fragment, a result that is supported by mutagenesis experiments. The mapping indicates distinct binding preferences for RRM3 and RRM4 with the former making a particularly specific interaction with the sequence UCUUC.  相似文献   

10.
Splicing of exons 2 and 3 of a-tropomyosin (TM) involves mutually exclusive selection of either exon 3, which occurs in most cells, or of exon 2 in smooth muscle (SM) cells. The SM-specific selection of exon 2 results from the inhibition of exon 3. At least two essential cis-acting elements are required for exon 3 inhibition, the upstream and downstream regulatory elements (URE and DRE). These elements are essential for repression of TM exon 3 in SM cells, and also mediate a low level of repression of exon 3 in an in vitro 5' splice site competition assay in HeLa extracts. Here, we show that the DRE consists of at least two discrete components, a short region containing a number of UGC motifs, and an essential pyrimidine-rich tract (DY). We show that the specific sequence of the DY element is important and that DY is able to bind to factors in HeLa nuclear extracts that mediate a low background level of exon 3 skipping. Deletion of a sequence within DY identified as an optimal binding site for PTB impairs (1) regulation of splicing in vivo, (2) skipping of exon 3 in an in vitro 5' splice site competition, (3) the ability of DY competitors to affect the 5' splice site competition in vitro, and (4) binding of PTB to DY. Addition of recombinant PTB to in vitro splicing reactions is able to partially reverse the effects of the DY competitor RNA. The data are consistent with a model for regulation of TM splicing that involves the participation of both tissue-specific and general inhibitory factors and in which PTB plays a role in repressing both splice sites of exon 3.  相似文献   

11.
The Δ6 desaturase, encoded by FADS2, plays a crucial role in omega-3 and omega-6 fatty acid synthesis. These fatty acids are essential components of the central nervous system, and they act as precursors for eicosanoid signaling molecules and as direct modulators of gene expression. The polypyrimidine tract binding protein (PTB or hnRNP I) is a splicing factor that regulates alternative pre-mRNA splicing. Here, PTB is shown to bind an exonic splicing silencer element and repress alternative splicing of FADS2 into FADS2 AT1. PTB and FADS2AT1 were inversely correlated in neonatal baboon tissues, implicating PTB as a major regulator of tissue-specific FADS2 splicing. In HepG2 cells, PTB knockdown modulated alternative splicing of FADS2, as well as FADS3, a putative desaturase of unknown function. Omega-3 fatty acids decreased by nearly one half relative to omega-6 fatty acids in PTB knockdown cells compared with controls, with a particularly strong decrease in eicosapentaenoic acid (EPA) concentration and its ratio to arachidonic acid (ARA). This is a rare demonstration of a mechanism specifically altering the cellular omega-3 to omega-6 fatty acid ratio without any change in diet/media. These findings reveal a novel role for PTB, regulating availability of membrane components and eicosanoid precursors for cell signaling.  相似文献   

12.
The aim of this study was to further elucidate the role of the polypyrimidine tract binding protein (PTB) in the control of insulin mRNA stability. We observed that the glucose- or interleukin-1beta-induced increase in insulin mRNA was paralleled by an increase in PTB mRNA. To further test the hypothesis that PTB controls insulin gene expression, betaTC-6 cells were treated with a PTB-specific siRNA to modify the beta-cell content of PTB. Surprisingly, we observed an increase in PTB mRNA and PTB protein levels in response to the siRNA treatment. In addition, the PTB-siRNA treatment also increased insulin mRNA. We conclude that expression of the PTB gene controls insulin production.  相似文献   

13.
We studied the role of polypyrimidine tract binding protein in repressing splicing of the c-src neuron-specific N1 exon. Immunodepletion/add-back experiments demonstrate that PTB is essential for splicing repression in HeLa extract. When splicing is repressed, PTB cross-links to intronic CUCUCU elements flanking the N1 exon. Mutation of the downstream CU elements causes dissociation of PTB from the intact upstream CU elements and allows splicing. Thus, PTB molecules bound to multiple elements cooperate to repress splicing. Interestingly, in neuronal WERI-1 cell extract where N1 is spliced, PTB also binds to the upstream CU elements but is dissociated in the presence of ATP. We conclude that splicing repression by PTB is modulated in different cells by a combination of cooperative binding and ATP-dependent dissociation.  相似文献   

14.
Polypyrimidine tract binding protein (PTB) is an RNA-binding protein that regulates splicing by repressing specific splicing events. It also has roles in 3'-end processing, internal initiation of translation, and RNA localization. PTB exists in three alternatively spliced isoforms, PTB1, PTB2, and PTB4, which differ by the insertion of 19 or 26 amino acids, respectively, between the second and third RNA recognition motif domains. Here we show that the PTB isoforms have distinct activities upon alpha-tropomyosin (TM) alternative splicing. PTB1 reduced the repression of TM exon 3 in transfected smooth muscle cells, whereas PTB4 enhanced TM exon 3 skipping in vivo and in vitro. PTB2 had an intermediate effect. The PTB4 > PTB2 > PTB1 repressive hierarchy was observed in all in vivo and in vitro assays with TM, but the isoforms were equally active in inducing skipping of alpha-actinin exons and showed the opposite hierarchy of activity when tested for activation of IRES-driven translation. These findings establish that the ratio of PTB isoforms could form part of a cellular code that in turn controls the splicing of various other pre-mRNAs.  相似文献   

15.
16.
17.
A complex of nucleic acid binding proteins (100, 35, and 25 kDa) was purified to apparent homogeneity from nuclear extracts of the murine plasmacytoma J558L. Amino-terminal sequence analysis of the 25-kDa subunit enabled the isolation of a cDNA that encodes a 528-amino acid protein that is highly homologous to the human 62-kDa human polypyrimidine tract binding protein (PTB) (Garcia-Blanco, M. A., Jamison, S. F., and Sharp, P. A. (1989) Genes & Dev. 3, 1874-1886; Gil, A., Sharp, P. A., Jamison, S. F., and Garcia-Blanco, M. A. (1991) Genes & Dev. 5, 1224-1236; Patton, J. G., Mayer, S. A., Tempst, P., and Nadal-Ginard, B. (1991) Genes & Dev. 5, 1237-1251). Sequence comparison programs suggested the presence of domains related to the RNA recognition motif found in other RNA-binding proteins, and deletion analysis revealed that the carboxyl-terminal 195 amino acids of the recombinant PTB was sufficient for specific binding to pre-mRNAs. Cross-linking experiments identified a 25-kDa protein in crude nuclear extracts of J558L cells that possessed the RNA binding properties of PTB, while a approximately 60-kDa protein is detected in other murine cell lines tested. Thus, the 25-kDa protein found in J558L is likely a proteolytic product of the murine polypyrimidine tract binding protein. A probe derived from the PTB cDNA detected a ubiquitous 3.3-kb mRNA in murine cell lines and a 3.6-kb mRNA in human lines. Southern blot analysis revealed three strongly hybridizing DNA fragments and several more weakly hybridizing bands in mouse, human, and yeast DNA. The role of PTB in pre-mRNA splicing is discussed.  相似文献   

18.
We describe the role of the Drosophila melanogaster hephaestus gene in wing development. We have identified several hephaestus mutations that map to a gene encoding a predicted RNA-binding protein highly related to human polypyrimidine tract binding protein and Xenopus laevis 60 kDa Vg1 mRNA-binding protein. Polypyrimidine tract binding proteins play diverse roles in RNA processing including the subcellular localization of mRNAs, translational control, internal ribosome entry site use, and the regulation of alternate exon selection. The analysis of gene expression in imaginal discs and adult cuticle of genetic mosaic animals supports a role for hephaestus in Notch signalling. Somatic clones lacking hephaestus express the Notch target genes wingless and cut, induce ectopic wing margin in adjacent wild-type tissue, inhibit wing-vein formation and have increased levels of Notch intracellular domain immunoreactivity. Clones mutant for both Delta and hephaestus have the characteristic loss-of-function thick vein phenotype of DELTA: These results lead to the hypothesis that hephaestus is required to attenuate Notch activity following its activation by Delta. This is the first genetic analysis of polypyrimidine tract binding protein function in any organism and the first evidence that such proteins may be involved in the Notch signalling pathway.  相似文献   

19.
Alternative modes of binding by U2AF65 at the polypyrimidine tract   总被引:1,自引:0,他引:1  
During initial recognition of an intron in pre-mRNA, the 3' end of the intron is bound by essential splicing factors. Notably, the consensus RNA sequences bound by these proteins are highly degenerate in humans. This raises the question of 3' splicing factor function in introns lacking canonical binding sites. Investigating the introns of the model organism Neurospora crassa revealed a different organization at the 3' end of the intron compared to most eukaryotic organisms. The predicted branch point sequences of Neurospora introns are much closer to the 3' splice site compared to those in human introns. In addition, Neurospora introns lack the canonical polypyrimidine tract found at the end of introns in most eukaryotic organisms. The large subunit of the U2 snRNP associated factor (U2AF65), which is essential for splicing of human introns and specifically recognizes the polypyrimidine tract, is also present in Neurospora. We show that Neurospora U2AF65 binds RNA with low affinity and specificity, apparently evolving with its disappearing binding site. The arginine/serine rich domain at the N-terminus of Neurospora U2AF65 regulates its RNA binding. We find that this regulated binding can be recapitulated in human U2AF65 which has been mutated to decrease both affinity and overall charge. Finally, we show that the addition of the small U2AF subunit (U2AF35) to U2AF65 with weakened RNA binding affinity significantly enhances the affinity of the resulting U2AF heterodimer.  相似文献   

20.
Mammalian host factors required for efficient viral gene expression and propagation have been often recalcitrant to genetic analysis. A case in point is the function of cellular factors that trans-activate internal ribosomal entry site (IRES)-driven translation, which is operative in many positive-stranded RNA viruses, including all picornaviruses. These IRES trans-acting factors have been elegantly studied in vitro, but their in vivo importance for viral gene expression and propagation has not been widely confirmed experimentally. Here we use RNA interference to deplete mammalian cells of one such factor, the polypyrimidine tract binding protein, and test its requirement in picornavirus gene expression and propagation. Depletion of the polypyrimidine tract binding protein resulted in a marked delay of particle propagation and significantly decreased synthesis and accumulation of viral proteins of poliovirus and encephalomyocarditis virus. These effects could be partially restored by expression of an RNA interference-resistant exogenous polypyrimidine tract binding protein. These data indicate a critical role for the polypyrimidine tract binding protein in picornavirus gene expression and strongly suggest a requirement for efficient IRES-dependent translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号