共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye 总被引:4,自引:0,他引:4
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina. 相似文献
2.
Programmed cell death in intervertebral disc degeneration 总被引:6,自引:0,他引:6
Zhao CQ Jiang LS Dai LY 《Apoptosis : an international journal on programmed cell death》2006,11(12):2079-2088
Intervertebral disc (IVD) degeneration is largely a process of destruction and failure of the extracellular matrix (ECM),
and symptomatic IVD degeneration is thought to be one of the leading causes of morbidity or life quality deterioration in
the elderly. To date, however, the mechanism of IVD degeneration is still not fully understood. Cellular loss from cell death
in the process of IVD degeneration has long been confirmed and considered to contribute to ECM degradation, but the causes
and the manners of IVD cell death remain unclear. Programmed cell death (PCD) is executed by an active cellular process and
is extensively involved in many physiological and pathological processes, including embryonic development and human degenerative
diseases. Thus, the relationship between PCD and IVD degeneration has become a new research focus of interest in recent years.
By reviewing the available literature concentrated on PCD in IVD and discussing the methodology of detecting PCD in IVD cells,
its inducing factors, the relationship of cell death to ECM degradation, and the potential therapy for IVD degeneration by
modulation of PCD, we conclude that IVD cells undergo PCD via different signal transduction pathways in response to different
stimuli, that PCD may play a role in the process of IVD degeneration, and that modulation of PCD might be a potential therapeutic
strategy for IVD degeneration. 相似文献
3.
Early neural cell death: dying to become neurons 总被引:1,自引:0,他引:1
The importance of programmed cell death (PCD) during vertebrate development has been well established. During the development of the nervous system in particular, neurotrophic cell death in innervating neurons matches the number of neurons to the size of their target field. However, PCD also occurs during earlier stages of neural development, within populations of proliferating neural precursors and newly postmitotic neuroblasts, all of which are not yet fully differentiated. This review addresses early neural PCD, which is distinct from neurotrophic death in differentiated neurons. Although early neural PCD is observed in a range of organisms, from Caenorhabditis elegans to mouse, the role and the regulation of early neural PCD are not well understood. The regulation of early neural PCD can be inferred from the function of factors such as bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors (FGFs), and Sonic Hedgehog (Shh), which regulate both early neural development and PCD occurring in other developmental processes. Cell number control, removal of damaged or misspecified cells (spatially or temporally), and selection are the proposed roles early neural PCDs play during neural development. Data from developmental PCD in C. elegans and Drosophila provide insights into the possible signaling pathways integrating PCD with other processes during early neural development and the roles they might play. 相似文献
4.
Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies. [BMB Reports 2013; 46(8): 383-390] 相似文献
5.
6.
Maraschin Sde F Gaussand G Pulido A Olmedilla A Lamers GE Korthout H Spaink HP Wang M 《Planta》2005,221(4):459-470
Androgenesis represents one of the most fascinating examples of cell differentiation in plants. In barley, the conversion of stressed uninucleate microspores into embryo-like structures is highly efficient. One of the bottlenecks in this process is the successful release of embryo-like structures out of the exine wall of microspores. In the present work, morphological and biochemical studies were performed during the transition from multicellular structures to globular embryos. Exine wall rupture and subsequent globular embryo formation were observed only in microspores that divided asymmetrically. Independent divisions of the generative and the vegetative nuclei gave rise to heterogeneous multicellular structures, which were composed of two different cellular domains: small cells with condensed chromatin structure and large cells with normal chromatin structure. During exine wall rupture, the small cells died and their death marked the site of exine wall rupture. Cell death in the small cell domain showed typical features of plant programmed cell death. Chromatin condensation and DNA degradation preceded cell detachment and cytoplasm dismantling, a process that was characterized by the formation of vesicles and vacuoles that contained cytoplasmic material. This morphotype of programmed cell death was accompanied by an increase in the activity of caspase-3-like proteases. The orchestration of such a death program culminated in the elimination of the small generative domain, and further embryogenesis was carried out by the large vegetative domain. To date, this is the first report to show evidence that programmed cell death takes part in the development of microspore-derived embryos. 相似文献
7.
8.
Summary The numbers of cells in the trophectoderm (TE) and inner cell mass (ICM) of mouse blastocysts were counted by differentially labelling their nuclei with two polynucleotide-specific fluorochromes. Blastocysts recovered from the uterus at intervals between their formation early on Day 4 to the initial stages of implantation on day 5 were analysed. TE cell number increase was initially rapid, indicating some synchronisation of the sixth division, but slowed down progressively and plateaued on Day 5, possibly due to the onset of primary giant cell formation. ICM cell number increase was slower than the corresponding TE cells. As a result, TE cell number more than quadrupled, whereas ICM cell number only doubled over this period. Although the mitotic index of both populations of cells fell steadily, there was no significant difference between them. The decline in the proportion of ICM cells, therefore, is likely to be due to cell death, first detected in early blastocysts and predominantly located in the ICM. In addition, however, a contribution of ICM cells to the overlying polar TE cannot be excluded. 相似文献
9.
10.
Simon R Dunn John C BythellMartin D.A Le Tissier William J BurnettJeremy C Thomason 《Journal of experimental marine biology and ecology》2002,272(1):29-53
Different cell death pathways were investigated during bleaching in the sea anemone Aiptasia sp. in response to hyperthermic treatment. Using a suite of techniques, (haematoxylin and eosin staining of paraffin wax-embedded tissue sections, in-situ end labelling (ISEL) of fragmented DNA, agarose gel electrophoresis electron microscopy) both necrotic and programmed cell death (PCD) activity were indicated. After a treatment period of 4 days, the host endoderm tissues underwent necrotic cell death. This was indicated by widespread cellular degradation, dilation of cell cytoplasm and organelles, cell swelling and rupture, irregular pyknotic condensation of nuclear chromatin, and abundant cell debris. Host cell necrosis was associated with the release of zooxanthellae with a normal, healthy appearance into the coelenteron. Longer periods of hyperthermic treatment (7 days) were correlated with further animal cell degradation and the in-situ degradation of zooxanthellae remaining within the degraded endoderm. Within the same degraded endoderm tissue, the degradation of zooxanthellae resulted from two forms of cell death occurring simultaneously, which were identified as programmed cell death and cell necrosis. Programmed cell death of zooxanthellae was characterised by condensation of the cytoplasm and organelles, cell shrinkage, formation of accumulation bodies at the periphery of the cell wall, and DNA fragmentation. Cell necrosis of zooxanthellae was characterised by dilation of the cytoplasm and organelles, cell swelling and lysis, dispersion of cell component debris, and DNA fragmentation. The existence of a programmed cell death pathway within zooxanthellae is important to the understanding of coral bleaching events, raising interesting questions regarding the evolution of this process and the activation of the cellular trigger mechanisms involved. 相似文献
11.
Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death 总被引:13,自引:0,他引:13
Elzira E. Saviani Cintia H. Orsi Jusceley F. P. Oliveira Cecília A. F. Pinto-Maglio Ione Salgado 《FEBS letters》2002,510(3):136-140
In the present study, we investigated the involvement of the mitochondrial permeability transition pore (PTP) in nitric oxide (NO)-induced plant cell death. NO donors such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine inhibited growth and caused death in suspension-cultured cells of Citrus sinensis. Cells treated with SNP showed chromatin condensation and fragmentation, characteristic of apoptosis. SNP caused loss of the mitochondrial membrane electrical potential, which was prevented by cyclosporin A (CsA), a specific inhibitor of PTP formation. CsA also prevented the nuclear apoptosis and subsequent Citrus cell death induced by NO. These findings indicate that mitochondrial PTP formation is involved in the signaling pathway by which NO induces apoptosis in cultured Citrus cells. 相似文献
12.
Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED) 12 and 18. TUNEL assays at ED12 disclosed a significant increase (300%) in pyknotic cells at 6 h p-h, while at ED18 no morphological changes were observed in hypoxic versus controls. At ED12 there was a significant increase (48%) in Bcl-2 levels at the end of the hypoxic treatment, followed by a significant increase of active caspase-9 (49%) and active caspase-3 (58%) at 30 and 60 min p-h, respectively, while at ED18 no significant changes were observed. These findings indicate that prenatal hypoxia produces an equilibrated imbalance in both pro- and anti-apoptotic proteins that culminates in a process of cell death, present at earlier stages of development. 相似文献
13.
Qi F Kreth J Lévesque CM Kay O Mair RW Shi W Cvitkovitch DG Goodman SD 《FEMS microbiology letters》2005,252(2):321-326
Streptococcus mutans is considered one of the main causative agents of human dental caries. Cell-cell communication through two-component signal transduction systems (TCSTS) plays an important role in the pathogenesis of S. mutans. One of the S. mutans TCSTS, ComDE, controls both competence development and biofilm formation. In this study, we showed that addition of exogenous competence-stimulating peptide (CSP) beyond the levels necessary for competence inhibited the growth of S. mutans in a ComDE-dependent manner. We also demonstrated that further increases of CSP stopped S. mutans cell division leading to cell death. Use of CSP as a possible therapeutic agent is discussed. 相似文献
14.
We have characterized the process of flight muscle histolysis in the female house cricket, Acheta domesticus, through analysis of alterations of tissue wet weight, total protein content, and percent shortening of the dorsal longitudinal flight muscles (DLMs). Our objectives were to (1) define the normal course of histolysis in the cricket, (2) analyze the effects of juvenile hormone (JH) removal and replacement, (3) determine the effects of cycloheximide treatment, and (4) examine patterns of protein expression during histolysis. Our results suggest that flight muscle histolysis in the house cricket is an example of an active, developmentally regulated cell death program induced by an endocrine signal. Initial declines of total protein in DLMs indicated the JH signal that induced histolysis occurred by Day 2 and that histolysis was essentially complete by Day 3. Significant reductions in tissue weight and percent muscle shortening were observed in DLMs from Day 3 crickets. Cervical ligation of Day 1 crickets prevented histolysis but this inhibition could be reversed by continual topical treatments with methoprene (an active JH analog) although ligation of Day 2 crickets did not prevent histolysis. A requirement for active protein expression was demonstrated by analysis of synthesis block by cycloheximide and short-term incorporation of (35)S-methionine. Treatment with cycloheximide prevented histolysis. Autofluorographic imaging of DLM proteins separated by electrophoresis revealed apparent coordinated regulation of protein expression. 相似文献
15.
Ping Li Huang-Ming Cao Ming-Dao Chen 《Biochemical and biophysical research communications》2009,390(4):1208-1213
Obesity is frequently associated with malfunctions of the hypothalamus-pituitary-adrenal (HPA) axis and hyperaldosteronism, but the mechanism underlying this association remains unclear. Since the adrenal glands are embedded in adipose tissue, direct cross-talk between adipose tissue and the adrenal gland has been proposed. A previous study found that adiponectin receptor mRNA was expressed in human adrenal glands and aldosterone-producing adenoma (APA). However, the expression of adiponectin receptors in adrenal glands has not been confirmed at the protein level or in other species. Furthermore, it is unclear whether adiponectin receptors expressed in adrenal cells are functional. We found, for the first time, that adiponectin receptor (AdipoR1 and AdipoR2) mRNA and protein were expressed in mouse adrenal and adrenocortical Y-1 cells. However, adiponectin itself was not expressed in mouse adrenal or Y-1 cells. Furthermore, adiponectin acutely reduced basal levels of corticosterone and aldosterone secretion. ACTH-induced steroid secretion was also inhibited by adiponectin, and this was accompanied by a parallel change in the expression of the key genes involved in steroidogenesis. These findings indicate that adiponectin may take part in the modulation of steroidogenesis. Thus, adiponectin is likely to have physiological and/or pathophysiological significance as an endocrine regulator of adrenocortical function. 相似文献
16.
The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier. 相似文献
17.
Two major pathways of programmed cell death (PCD)--the apoptotic and the autophagic cell death--were investigated in the decomposition process of the larval fat body during the 5th larval stage of Manduca sexta. Several basic aspects of apoptotic and autophagic cell death were analyzed by morphological and biochemical methods in order to disclose whether these mechanisms do have shared common regulatory steps. Morphological examination revealed the definite autophagic wave started on day 4 followed by DNA fragmentation as demonstrated by agarose gel electrophoresis and TUNEL assay. By the end of the wandering period the cells were filled with autophagic vacuoles and protein granules of heterophagic origin and the vast majority of the nuclei were TUNEL-positive. No evidence was found of other aspects of apoptosis, e.g. activation of executioner caspases. Close correlation was disclosed between the onset of autophagy and the nuclear accumulation of the ubiquitin-proteasome system. 相似文献
18.
20-Hydroxyecdysone (20E) triggers programmed cell death (PCD) and regulates de novo gene expression in the anterior silk glands (ASGs) of the silkworm Bombyx mori. PCD is mediated via a nongenomic pathway that includes Ca2+ as a second messenger and the activation of protein kinase C/caspase-3-like protease; however, the steps leading to a concomitant buildup of intracellular Ca2+ are unknown. We employed pharmacological tools to identify the components of this pathway. ASGs were cultured in the presence of 1 μM 20E and one of the following inhibitors: a G-protein-coupled receptor (GPCR) inhibitor, a phospholipase C (PLC) inhibitor, an inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, and an L- or T-type Ca2+ channel blocker. The T-type Ca2+ channel blocker inhibited 20E-induced nuclear and DNA fragmentation; in contrast, PCD was induced by 20E in Ca2+-free medium, indicating that the source of Ca2+ is an intracellular reservoir. The IP3R antagonist inhibited nuclear and DNA fragmentation, suggesting that the endoplasmic reticulum may be the Ca2+ source. Finally, the GPCR and PLC inhibitors effectively blocked nuclear and DNA fragmentation. Our results indicate that 20E increases the intracellular level of Ca2+ by activating IP3R, and that this effect may be brought about by the serial activation of GPCR, PLC, and IP3. 相似文献
19.
20.