共查询到20条相似文献,搜索用时 0 毫秒
1.
B D HARRISON X. ZHOU G W OTIM-NAPE Y. LIU D J ROBINSON 《The Annals of applied biology》1997,131(3):437-448
To study the cause of the current epidemic of severe mosaic in Ugandan cassava, PCR analysis was used to detect and identify African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV) and the recently reported recombinant geminivirus (UgV), which is derived from ACMV and EACMV, in leaf extracts from cassava plants grown from cuttings in the glasshouse at Dundee. The cuttings were collected from plants showing symptoms of different severities and growing at different sites in Uganda inside, at the periphery of, and outside, the area affected by the epidemic. ACMV occurred throughout the nine districts sampled but UgV was detected only in the area affected by the epidemic. EACMV was not found in Uganda. Most plants containing ACMV alone expressed mild or moderate mosaic, whereas very severe mosaic developed in most plants containing UgV plus ACMV and a few of those containing UgV only. Very severe mosaic in cassava from southern Sudan was likewise associated with co-infection by UgV and ACMV. The very severe disease was reproduced by graft-inoculating geminivirus-free cassava with UgV plus ACMV; plants inoculated with either UgV or ACMV developed severe or moderate symptoms, respectively. Unlike ACMV, Malawian EACMV did not enhance the severity of symptoms induced by UgV. However, a very severely affected plant from Ukerewe Island, Tanzania, contained ACMV and EACMV but not UgV. UgV attained a much greater concentration in cassava than did ACMV but the opposite occurred in Nicotiana benthamiana. In neither host was total virus antigen concentration affected by co-infection. Factors affecting the genesis, selection and spread of UgV are discussed. The evidence indicates that UgV is probably of relatively recent origin, that such variants do not appear often, and that the current epidemic has resulted from the rapid spread of UgV to infect plants and to invade regions in which ACMV already occurred. The novel type of virus complex so produced, consisting of an interspecific recombinant virus (UgV) and one of its parents (ACMV), typically has even more severe effects than UgV alone. 相似文献
2.
O. A. Ariyo M. Koerbler A. G. O. Dixon G. I. Atiri S. Winter 《Journal of Phytopathology》2005,153(4):226-231
Several begomovirus species and strains causing Cassava mosaic disease (CMD) have been reported from cassava in Africa. In Nigeria, African cassava mosaic virus (ACMV) was the predominant virus in this important crop, and East African cassava mosaic virus (EACMV), first reported from eastern Nigeria in 1999, was also found occasionally. A survey was conducted in 2002 to resolve the diversity of the virus types present in cassava in Nigeria and to further understand the increasing complexity of the viruses contributing to CMD. A total of 234 leaf samples from cassava with conspicuous CMD symptoms were collected in farmers’ fields across different agroecological zones of Nigeria and subjected to polymerase chain reaction (PCR) with type‐specific primers. In addition and, to provide a full characterization of the viruses present, DNA‐A genome components of several viruses and informative genome fragments were sequenced. In Nigeria, ACMV proved to be the dominant virus with 80% of all samples being positive for ACMV. The East African cassava mosaic Cameroon virus (EACMCV) prevalent in Cameroon and Ivory Coast was detected in single infections (2%) and in mixed infections (18%) with ACMV. There was no indication for other virus strains of EACMV present in the country. The EACMCV samples collected showed a high nucleotide sequence identity >98% and resembled the described sequence of a Cameroon isolate (EACMCV‐CM) more than an Ivory Coast isolate, EACMCV‐CM[CI]. Evidence is provided that the EACMCV has reached epidemiological significance in Nigeria. 相似文献
3.
B OWOR J P LEGG G OKAO-OKUJA R OBONYO M W OGENGA-LATIGO 《The Annals of applied biology》2004,145(3):331-337
A study was carried out to assess the effect of different cassava mosaic geminiviruses (CMGs) occurring in Uganda on the growth and yield of the susceptible local cultivar ‘Ebwanateraka’. Plants infected with African cassava mosaic virus (ACMV), ‘mild’ and ‘severe’ strains of East African cassava mosaic virus‐Uganda (EACMV‐UG2) and both ACMV and EACMV‐UG2 were grown in two experiments in Kabula, Lyantonde in western Uganda. The most severe disease developed in plants co‐infected with ACMV and EACMV‐UG2 and in those infected with the ‘severe’ form of EACMV‐UG2 alone; disease was least severe in plants infected with the ‘mild’ strain of EACMV‐UG2. ACMV‐infected plants and those infected with the ‘mild’ strain of EACMV‐UG2 were tallest in the 1999–2000 and 2000–2001 trials, respectively; plants dually infected with ACMV and EACMV‐UG2 were shortest in both trials. Plants infected with ‘mild’ EACMV‐UG2 yielded the largest number and the heaviest tuberous roots followed by ACMV and EACMV‐UG2 ‘severe’, respectively, whilst plants dually infected with ACMV and EACMV‐UG2 yielded the least considering the two trials together. Reduction in tuberous root weight was greatest in plants dually infected with ACMV and EACMV‐UG2, averaging 82%. Losses attributed to ACMV alone, EACMV‐UG2 ‘mild’ and EACMV‐UG2 ‘severe’ were 42%, 12% and 68%, respectively. Fifty percent and 48% of the plants infected with both ACMV and EACMV‐UG2 gave no root yield in 1999–2000 and 2000–2001, respectively. These results indicate that CMGs, whether in single or mixed infections, reduce root yield and numbers of tuberous roots produced and that losses are substantially increased following mixed infection. 相似文献
4.
To determine the occurrence of variants of African cassava mosaic virus, 316 cassava leaf samples were collected from mosaic‐affected cassava plants in 254 farmers. fields in 1997 and 1998, covering the humid forest, coastal/derived, southern Guinea and northern Guinea savannas and arid and semi‐arid agroecologies of Nigeria. The samples were tested in triple antibody sandwich enzyme‐linked immunosorbent assay using a panel of 10 monoclonal antibodies (MAbs) against the virus in which 29 reaction patterns were observed. In cluster analysis, nine serotypes were obtained at 0.80 Jaccard similarity coefficient index in which at least 50% of isolates of each serotype reacted alike. The serotypes ranged between two extremes: serotype 1 with 90% isolates reacting with the 10 MAbs and serotype 8 in which 90% of its isolates failed to react with the antibodies. Isolates of serotypes 1, 2, 4 and 8 were widely distributed while those of the other serotypes were estricted to certain agroecologies. Four representative isolates 227 (serotype 1), 231 (serotype 2), 235 and 283 (serotype 8) elicited different responses in Nicotiana, benthamiana, with isolate 283 not able to infect this and other test plants used. The serological variations did not necessarily reflect the biological variations. In polymerase chain reaction tests, one out of the five pairs of ACMV primers tested distinguished only isolate 283. The humid forest, derived/coastal and southern Guinea savannas where most of the crop is grown in Nigeria had a high number of variants, which makes the agroecologies suitable for the selection of resistant cassava clones against ACMV. 相似文献
5.
J. P. Busogoro L. Masquellier J. Kummert O. Dutrecq P. Lepoivre M. H. Jijakli 《Journal of Phytopathology》2008,156(7-8):452-457
Samples of cassava leaves exhibiting severe symptoms of cassava mosaic disease (CMD) were collected with the PhytoPASS kit in fields surrounding the city of Bujumbura (Burundi). These materials were then sent to Belgium for polymerase chain reaction determination of the CMD begomoviruses inducing the observed symptoms. Different pairs of specific primers were used to amplify DNA sequences specific to African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Cameroon virus (EACMCV), East African cassava mosaic Malawi virus (EACMMV), East African cassava mosaic Zanzibar virus (EACMZV), the Uganda variant of East African cassava mosaic virus (EACMV-UG) and South African cassava mosaic virus (SACMV). It was revealed that mixed infections were prevailing in the analyzed materials. Most of the samples submitted to this analysis were found to be co-infected by three different begomoviruses (ACMV + EACMV + EACMV-UG). The so revealed mixed infections could explain the high severity of CMD symptoms noticed on cassava in the region of Bujumbura while the diversity within the CMD causal agents illustrates the importance to take this parameter into consideration for a successful use of plant genetic resistance to control the disease. 相似文献
6.
《植物学报(英文版)》2025,67(5)
NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the receptor for salicylic acid (SA), plays a central role in the SA-mediated basal antiviral responses. Recent studies have shown that two different plant RNA viruses encode proteins that suppress such antiviral responses by inhibiting its SUMOylation and inducing its degradation, respectively. However, it is unclear whether targeting NPR1 is a general phenomenon in viruses and whether viruses have novel strategies to inhibit NPR1. In the present study, we report that two different positive-sense single-stranded RNA (+ssRNA) viruses, namely, alfalfa mosaic virus (AMV) and potato virus X (PVX); one negative-sense single-stranded RNA (−ssRNA) virus (calla lily chlorotic spot virus, CCSV); and one single-stranded DNA virus (beet severe curly-top virus, BSCTV) that also encode one or more proteins that interact with NPR1. In addition, we found that the AMV-encoded coat protein (CP) can induce NPR1 degradation by recruiting S-phase kinase-associated protein 1 (Skp1), a key component of the Skp1/cullin1/F-box (SCF) E3 ligase. In contrast, the BSCTV-encoded V2 protein inhibits NPR1 function, probably by affecting its nucleocytoplasmic distribution via the nuclear export factor ALY. Taken together, these data suggest that NPR1 is one of the central hubs in the molecular arms race between plants and viruses and that different viruses have independently evolved different strategies to target NPR1 and disrupt its function. 相似文献
7.
8.
Abutilon mosaic virus (AbMV), a bipartite geminivirus of the genus Begomovirus, has been vegetatively propagated for many years in Abutilon sellovianum in which it is strictly phloem-restricted. Using in situ hybridization and immunological analyses, the tissue tropism of AbMV in the laboratory host Nicotiana benthamiana was compared with that of two other bipartite begomoviruses, African cassava mosaic virus (ACMV) and tomato golden mosaic virus (TGMV). Analysis of the first systemically infected leaves and longitudinal sections of axillary and flower buds revealed that all three viruses are initially confined to the vascular traces, although both ACMV and TGMV are later detectable in nearly all tissue types. In contrast, AbMV remained strictly phloem-limited in this host throughout the course of infection. The ability of ACMV and TGMV to move out of N. benthamiana phloem tissues is correlated with the development of severe symptoms in comparison with the mild symptoms associated with AbMV infection. It was also demonstrated that Sida micrantha mosaic virus, a virus that is closely related to AbMV, is phloem-limited in Malva parviflora even though it induces severe leaf curl, stunting and necrosis in this host. The present data demonstrate that bipartite begomoviruses can exhibit strikingly different patterns of tissue tropism. 相似文献
9.
10.
Takahashi H Miller J Nozaki Y Takeda M Shah J Hase S Ikegami M Ehara Y Dinesh-Kumar SP;Sukamto 《The Plant journal : for cell and molecular biology》2002,32(5):655-667
The dominant locus, RCY1, in the Arabidopsis thaliana ecotype C24 confers resistance to the yellow strain of cucumber mosaic virus (CMV-Y). The RCY1 locus was mapped to a 150-kb region on chromosome 5. Sequence comparison of this region from C24 and a CMV-Y-susceptible C24 mutant predicts that the RCY1 gene encodes a 104-kDa CC-NBS-LRR-type protein. The RCY1 gene from C24, when expressed in the susceptible ecotype Wassilewskija (Ws), restricted the systemic spread of virus. RCY1 is allelic to the resistance genes RPP8 from the ecotype Landsberg erecta and HRT from the ecotype Dijon-17, which confer resistance to Peronospora parasitica biotype Emco5 and turnip crinkle virus (TCV), respectively. Examination of RCY1 plants defective in salicylic acid (SA), jasmonic acid (JA) and ethylene signaling revealed a requirement for SA and ethylene signaling in mounting a resistance response to CMV-Y. The RCY1 nahG etr1 double mutants exhibited an intermediate level of susceptibility to CMV-Y, compared to the resistant ecotype C24 and the susceptible ecotypes Columbia and Nossen. This suggests that in addition to SA and ethylene, a novel signaling mechanism is associated with the induction of resistance in CMV-Y-infected C24 plants. Moreover, our results suggest that the signaling pathways downstream of the RPP8, HRT, and RCY1 have evolved independently. 相似文献
11.
A virus found in cassava from the north-west of the Ivory Coast was transmitted by inoculation with sap extracts to herbaceous species in six plant families. Chenopodium quinoa was used as a propagation host and C. murale was used for local lesion assays. The virus particles are bacilliform, c. 18 nm in diameter, with predominant lengths of 42,49 and 76 nm and a structure apparently similar to that found in alfalfa mosaic virus. Purified preparations of virus particles had A260/A280 of 1.7 ±0.05, contained one protein of Mrc. 22 000, and yielded three species of RNA with Mr (× 10-6) of c. 0.7, 0.8 and 1.2. Although the virus particles were poorly immunogenic, an antiserum was produced and the virus was detected by enzyme-linked immunosorbent assay (DAS-ELISA) in leaf extracts at concentrations down to c. 6 ng/ml. Four other field isolates were also detected, including a strain which caused only mild systemic symptoms in C. quinoa instead of necrosis. The naturally infected cassava source plants were also infected with African cassava mosaic virus (ACMV) but when the new virus was cultured in Nicotiana benthamiana, either separately or together with ACMV, its concentration was the same. The new virus did not react with antisera to several plant viruses with small bacilliform or quasi-bacilliform particles, and alfalfa mosaic virus reacted only weakly and inconsistently with antiserum to the cassava virus. The new virus, for which the name cassava Ivorian bacilliform virus is proposed, is tentatively classified as the second member of the alfalfa mosaic virus group. 相似文献
12.
13.
Shu Wang Kelei Han Jiejun Peng Jinping Zhao Liangliang Jiang Yuwen Lu Hongying Zheng Lin Lin Jianping Chen Fei Yan 《Molecular Plant Pathology》2019,20(7):990-1004
AGD2-LIKE DEFENCE RESPONSE PROTEIN 1 (ALD1) triggers plant defence against bacterial and fungal pathogens by regulating the salicylic acid (SA) pathway and an unknown SA-independent pathway. We now show that Nicotiana benthamiana ALD1 is involved in defence against a virus and that the ethylene pathway also participates in ALD1-mediated resistance. NbALD1 was up-regulated in plants infected with turnip mosaic virus (TuMV). Silencing of NbALD1 facilitated TuMV infection, while overexpression of NbALD1 or exogenous application of pipecolic acid (Pip), the downstream product of ALD1, enhanced resistance to TuMV. The SA content was lower in NbALD1-silenced plants and higher where NbALD1 was overexpressed or following Pip treatments. SA mediated resistance to TuMV and was required for NbALD1-mediated resistance. However, on NahG plants (in which SA cannot accumulate), Pip treatment still alleviated susceptibility to TuMV, further demonstrating the presence of an SA-independent resistance pathway. The ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), accumulated in NbALD1-silenced plants but was reduced in plants overexpressing NbALD1 or treated with Pip. Silencing of ACS1, a key gene in the ethylene pathway, alleviated the susceptibility of NbALD1-silenced plants to TuMV, while exogenous application of ACC compromised the resistance of Pip-treated or NbALD1 transgenic plants. The results indicate that NbALD1 mediates resistance to TuMV by positively regulating the resistant SA pathway and negatively regulating the susceptible ethylene pathway. 相似文献
14.
A survey for cassava mosaic disease (CMD) was conducted in Kenya, to investigate the factors contributing to the generally increased incidence and severity of CMD in the cassava growing regions and to study the distribution of the disease's causal begomoviruses, African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV) and their strains. Special emphasis was given to the occurrence of the destructive recombinant Uganda variant strain of EACMV (EACMV-UG2). Samples from 91 farmers' fields in the main cassava-growing areas of coastal and western Kenya were collected and subjected to ELISA and PCR for detection and typing of the begomoviruses present. CMD incidence was highest in western Kenya (80–100%) and lowest in the Coast province (25–50%). In Western and Nyanza provinces, 52% of the samples tested contained EACMV-UG2, 22% ACMV and 17% contained both ACMV and EACMV-UG2. EACMV was found in four cases at different sites. In cassava samples from the coast province, only EACMV with DNA-A sequences similar to EACMV strains present in Kenya and Tanzania was found. East African cassava mosaic Zanzibar virus (EACMZV) was present in several farms in the Kilifi district. In 15% of all cassava samples with CMD symptoms, flexuous, filamentous virus-like particles were also found, providing evidence for a more complex virus situation in cassava grown at the Kenyan coast. In western Kenya, where intense cassava cultivation takes place, CMD is rampant and EACMV-UG2 was found in mixed virus infections with ACMV driving the epidemics. In coastal areas, where farms are scattered and in isolation, EACMV is endemic, however, with a lower disease incidence and with a limited impact to cassava production. 相似文献
15.
A new strain of cassava common mosaic virus, designated Cs CMV-ve, was isolated from cassava (Manihot esculenta Crantz) plants growing in Venezuela. The 520 nm long semi-flexuous virus particles sedimented in sucrose gradients as one component and contained a single coat protein molecule of c. 28 kDa, and a ssRNA of c. 2.1 times 106 . A single dsRNA species of c. 4.2 times 106 kDA was isolated from virus-infected cassava leaves. In double antibody sandwich enzyme-linked immunosorbent assay, Cs CMV-ve reacted strongly with antisera to Cs CMV and potato virus X, but not with those to other typical members of the potexvirus group. Ultrastructural studies of Cs CMV-ve infected cells showed the presence of large bundles of inclusion bodies in the cytoplasm, a proliferation of the rough endoplasmic reticulum, and large crystals in the peroxisomes. Cs CMV-ve in crude buffered sap or in purified preparations was not mechanically transmitted to known hosts of the Chaya and Brazilian strains of Cs CMV. Isolated virus RNA also failed to infect a range of test-plant species. This is the first report of the presence of Cs CMV in Venezuela. 相似文献
16.
17.
Ryu CM Murphy JF Mysore KS Kloepper JW 《The Plant journal : for cell and molecular biology》2004,39(3):381-392
Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid. 相似文献
18.
Krasavina M. S. Malyshenko S. I. Raldugina G. N. Burmistrova N. A. Nosov A. V. 《Russian Journal of Plant Physiology》2002,49(1):61-67
We studied the effects of salicylic acid (SA) on the plasmodesmal permeability as evaluated by the tobacco mosaic virus (TMV) spreading in tobacco Nicotiana glutinosaleaves, where TMV induces necrotic lesions. When leaves were treated with SA simultaneously with their viral inoculation, SA retarded the development of necrotic lesions and reduced their number. When inoculated leaves were kept on the SA solution at an elevated temperature (31°C) for a short period of time, the size of the necrotic lesions, which developed after leaf transfer to room temperature, was decreased. SA stimulated the formation of rapid callose involved in the control of the plasmodesmal permeability, which was assessed from fluorescence after tissue staining with Aniline Blue. On the basis of these data, we suggest that SA suppressed TMV spreading in the inoculated tobacco leaves by reducing the plasmodesmal permeability. 相似文献
19.
Hu G deHart AK Li Y Ustach C Handley V Navarre R Hwang CF Aegerter BJ Williamson VM Baker B 《The Plant journal : for cell and molecular biology》2005,42(3):376-391
In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1. 相似文献
20.
木薯是重要的经济与粮食作物,由于其出色的耐旱、耐贫瘠、易种植等特性,在全球热带和亚热带地区广泛种植。木薯在生长过程中会受到多种病虫害的威胁,其中分布最广、危害最严重的是木薯花叶病毒(Cassava mosaic virus,CMV)。CMV主要通过带毒茎秆和媒介昆虫烟粉虱传播,可以造成木薯叶片出现斑驳花叶、卷曲甚至枯萎,植株整体长势衰弱,导致木薯产量下降,严重威胁木薯生产。我国和东南亚木薯产区此前并没有CMV发生和危害的报道。可近年来,斯里兰卡木薯花叶病毒(Sri Lanka cassava mosaic virus,SLCMV)在东南亚地区广泛传播,已经成为该地区木薯生产的主要病害,对我国的木薯生产也构成了重大威胁。本文围绕SLCMV在亚洲的发生、传播机制和防治策略展开了讨论,以期为防控SLCMV在我国的危害提供参考。 相似文献