首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of co‐inoculation of Rhizoctonia solani and Colletotrichum lindemuthianum or Uromyces appendiculatus at different inoculum levels were studied on the disease dynamics and on the growth of bean plants under greenhouse conditions. Bean seeds were sown in R. solani‐infested soil. Additional experiments in which seedlings were transplanted to infested soil were also carried out. Conidial suspensions of C. lindemuthianum or uredospores of U. appendiculatus were inoculated onto leaves at plant developmental stages V2 and V3, respectively. Interactions between root rot and the aerial diseases were observed depending on the inoculum levels and on the timing of R. solani inoculation. Anthracnose severity tended to be higher on R. solani‐infected plants. Conversely, R. solani infection significantly reduced diameter of pustules and rust severity. When seedlings were transplanted to soil infested with low levels of R. solani, root rot severity and density of R. solani in the soil were magnified at high levels of C. lindemuthianum or U. appendiculatus. In these experiments, a synergistic interaction between root rot and anthracnose was observed to affect the plant dry weight. Antagonistic effects on the plant dry weight were found for the combination root rot/rust only when seeds were sown in infested soil.  相似文献   

2.
This study investigated the effect of silicon (Si) on resistance of bean plants (cv. ‘Peróla’) to anthracnose, caused by Colletotrichum lindemuthianum, grown in a nutrient solution containing 0 (?Si) or 2 mmol Si L?1 (+Si). The concentration of Si in leaf tissue and the incubation period increased by 55.2% and 14.3%, respectively, in +Si plants in relation to ?Si plants. The area under anthracnose progress curve and the severity estimated by the software QUANT significantly decreased by 32.9% and 27%, respectively, for +Si plants. Si did not affect the concentration of total soluble phenolics. Chitinases activity was higher in the advanced stages of infection by C. lindemuthianum for leaves of ?Si plants. β‐1,3‐Glucanase activity increased after C. lindemuthianum infection, but it was not enhanced by Si. Peroxidase and polyphenoloxidase activities had no apparent effect on the resistance of bean plants to anthracnose, regardless of the presence of Si. The increase in lignin concentration as well as on the phenylalanine ammonia‐lyase and lipoxygenase activities were important for the resistance of +Si plants against anthracnose. The results of this study suggest that Si may increase resistance to anthracnose in bean plants by enhancing certain biochemical mechanisms of defence as opposed to just acting as a physical barrier to penetration by C. lindemuthianum.  相似文献   

3.
The objective of this study was to identify the causal agent of anthracnose disease of cassava in Thailand. The study was carried out by collecting cassava samples with anthracnose symptoms from various planting areas including 10 districts of eight provinces in Thailand. One hundred and thirty‐six Colletotrichum samples were isolated from cassava anthracnose lesions on leaves, petioles and stems. Thirty‐eight single‐spore isolates were subsequently obtained and cultured on half potato dextrose agar for morphological and molecular characterizations. All 38 isolates were pathogenic with varying degrees of virulence when tested on detached leaves of Kasetsart 50, a susceptible cassava cultivar. Based on their growth habit, colony morphology, conidial morphology and the internal transcribed spacer sequences similarity to that of Colletotrichum accessions in the GenBank, one isolate was identified as C. capsici, one as C. lindemuthianum, two as Caeschynomene, four as Cboninense and 28 Cgloeosporioides species complex. Geographically, the cosmopolitan C. gloeosporioides species complex was found in all regions, but other species were found only in particular regions. This is, so far, the first report of Colletotrichum complex species associated with cassava anthracnose in Thailand.  相似文献   

4.
Basil is an economically important herb in the United States and in the world. Recent epidemics of basil downy mildew, caused by Peronospora belbahrii, have significantly affected basil production in the United States. ProPhyt (potassium phosphite), Actigard (acibenzolar‐S‐methyl) and Organocide (sesame oil) were evaluated in the greenhouse in the presence or absence of red light for their effects on the severity of downy mildew and sporangial production by P. belbahrii. Red light at intensity of 12 μmol photons/m2/s significantly (< 0.05) reduced severity of downy mildew in basil. ProPhyt‐treated basil plants had the lowest disease severity irrespective of red light exposure. Basil plants treated with Actigard and Organocide under red light had significantly lower disease severity compared to plants under dark conditions with the same fungicide treatments 14 and 13 days after inoculation (DAI) in experiments 1 and 2, respectively. Red light significantly reduced AUDPC in the treatments of Actigard and Organocide in both experiments. Basil plants treated with Actigard and Organocide under red light had significantly reduced number of P. belbahrii sporangia than those under dark conditions receiving the same fungicide treatments. This is the first report demonstrating red light in combination with Actigard and Organocide for improved management of downy mildew in greenhouse‐grown basil.  相似文献   

5.
The rust and brown eye spot, caused by Hemileia vastatrix and Cercospora coffeicola, respectively, are the most important fungal diseases on coffee in South America. Their management is mainly by chemical treatment, and there is no genetic resistance to brown eye spot known so far. Considering the need for developing alternative products for their control, the goal of this work was to evaluate the effects of phosphites and by‐products of coffee and citrus industries on rust and brown eye spot. Formulations of coffee and citrus industry by‐products, phosphites and their combination with fungicide were evaluated in field experiments, and their effect on fungal urediniospores and conidia was evaluated in vitro. In the field, treatments were applied individually or in combination and the in vitro assays were performed with manganese phosphite (Reforce Mn), potassium phosphite and citrus industry by‐product (Fortaleza), copper phosphite and coffee industry by‐product (Fitoforce Full), and fungicide. The severity and incidence of rust and brown eye spot on coffee leaves, yield, and leaf retention were evaluated in the field. Percentage of spore germination was evaluated in vitro for both fungi, whereas mycelial growth was evaluated for C. coffeicola only. The treatments Fortaleza, Reforce Mn and Fitoforce Full suppressed both diseases with a reduction in defoliation. In the year 2012, the plants treated with Reforce Mn and Reforce Mn + Fortaleza showed a yield increase of 72 and 88%, respectively, which was similar to the results shown by the fungicide treatment. In vitro inhibition of germination of H. vastatrix urediniospores and of C. coffeicola conidia was observed and suggests that the products exert some toxic effects to both fungi. Finally, the results observed indicate that the combined use of by‐products of plant‐processing industries and phosphites is an alternative and can be added efficiently to the management of coffee diseases.  相似文献   

6.
Postharvest anthracnose of banana caused by Colletotrichum musae is one of the major diseases resulting in huge economic losses worldwide. To control this disease using biocontrol agents, two antagonistic strains SD7 and NB20 with significant inhibitory effects on mycelial growth and conidial germination of C. musae were identified and evaluated in this study. The inhibitory effects of cell‐free culture filtrates of SD7 and NB20 on conidial germination of C. musae were both 100%, and those on mycelial growth of C. musae were 97.7 ± 0.9% and 95.0 ± 0.6%, respectively. The antifungal activities of cell‐free culture filtrates of both strains were still stable after they were stored at 4°C for 6 months. The control efficacies of cell‐free culture filtrates of SD7 and NB20 on postharvest anthracnose of banana were 55.9 ± 4.1% and 33.2 ± 3.9%, respectively. The disease severity (mean scale value) in banana fruit fingers was significantly lower after the treatment with a cultural suspension of the bacterial strain SD7 (1.4 ± 0.49) or actinomycete strain NB20 (2.0 ± 0.63), compared to that in the control (4.8 ± 0.40). After subculturing for 10 generations, the antifungal efficiency of NB20 remained stable, whereas that of strain SD7 declined obviously. Lastly, based on the morphological, physio‐biochemical and molecular characteristics, the bacterial strain SD7 was identified as Burkholderia cepacia, while the actinomycete strain NB20 was identified as Streptomyces katrae. The results from this study will provide the basis for developing an effective and novel biofungicide to control banana anthracnose disease.  相似文献   

7.
This study investigated whether foliar sprays of potassium silicate (KSi), sodium molybdate (NaMo) or a combination of both (KSi + NaMo), with or without the fungicide azoxystrobin (Azox), could reduce anthracnose symptoms, improve photosynthesis and increase yield. Two 2 × 4 factorial experiments, consisting of untreated or fungicide‐treated plants sprayed with KSi, NaMo or KSi + NaMo were arranged in a randomized block design with three replications. The treatments were as follows: (i) KSi; (ii) NaMo; (iii) KSi + NaMo; (iv) Azox; (v) Azox + KSi; (vi) Azox + NaMo; (vii) Azox + KSi + NaMo; and (viii) control (no KSi, NaMo or Azox). The KSi, NaMo and Azox treatments were applied at the rates of 35 g/l, 90 g/ha and 120 g ai/ha, respectively. KSi was applied at 20, 27, 40 and 55 days after sowing (das). NaMo was applied only at 27 das, whereas the fungicide was applied at 27, 40 and 55 das. The plants were inoculated with Colletotrichum lindemuthianum at 23 das. The anthracnose severity was reduced by 64.25% and yield increase by 156.2% in plants sprayed with fungicide compared with non‐sprayed ones. The KSi, NaMo and NaMo + KSi applications reduced anthracnose severity by 31.8, 16.1 and 37.9%, respectively, while the yield increased by 16.8, 18.9 and 63.9%, respectively. There was no difference between treated and non‐treated plants with KSi with respect to the leaf gas exchange parameters Ci, E and gs. However, A significantly increased by 16.9% in plants treated with Azox. The A was not affected by KSi or NaMo spray; however, it was significantly increased by 12.5% after spraying with NaMo + KSi. In conclusion, bean plants treated with Si and Mo were associated with a decrease in anthracnose as well as an enhancement in photosynthesis activity under field conditions.  相似文献   

8.
During August 2010 and January 2011, 10 isolates of Colletotrichum were recovered from stem anthracnose lesions of Hylocereus polyrhizus in the states of Kedah and Penang, Malaysia. Based on the morphological characteristics of colony colour and appearance, and shapes of conidia as well as sequences of internal transcribed spacer regions (ITS), β‐tubulin, actin (ACT) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH), the fungus was identified as Colletotrichum truncatum. Pathogenicity test showed that C. truncatum isolates were pathogenic to the artificially inoculated H. polyrhizus stem. This is the first report of C. truncatum causing anthracnose on H. polyrhizus stems in Malaysia.  相似文献   

9.
Anthracnose disease caused by Colletotrichum horii (C. gloeosporioides), results in considerable economic damage to sweet persimmon in southern Korea yearly. This study deals with the life cycle of the pathogen in terms of seasonal fluctuations of spore dispersal and the development of disease based on field surveys, spore potential and fungal isolation. Anthracnose disease was observed first on twigs in the last week of May and reached an incidence of 1.2%. Subsequently, the disease increased rapidly and reached an incidence of 86% by the end of July. Infection of fruits started in mid‐June (2.8%) and increased gradually to 64.4% by the end of July. In severely infected orchards, 46.2% of diseased fruits were dropped. The pathogen began releasing conidia in the first week of May and continued until the end of September. The maximum release of spores was observed in mid‐July. To determine the optimal use of chemicals for control of anthracnose, the following spray programme was evaluated. Spraying two or three times resulted in 89.4 and 93% control, respectively, whereas spraying more than four times led to 100% control. In comparison, the disease rate of unsprayed trees was 89.8%. To control anthracnose effectively, it is recommended to take steps to eliminate inoculum sources in sweet persimmon orchards before spraying chemicals.  相似文献   

10.
Target spot, caused by the fungus Corynespora cassiicola, has become a serious foliar disease in soybean production in the Brazilian Cerrado. Information in the literature regarding the biochemical defence responses of soybean to C. cassiicola infection is rare. Therefore, the objective of this study was to determine the biochemical features associated with soybean resistance to target spot. The activities of chitinases (CHI), β‐1‐3‐glucanases (GLU), phenylalanine ammonia‐lyases (PAL), peroxidases (POX), polyphenol oxidases (PPO) and lipoxygenases (LOX), as well as the concentrations of total soluble phenolics (TSP) and lignin‐thioglycolic acid (LTGA) derivatives, were determined in soybean leaves from both a resistant (FUNDACEP 59) and a susceptible (TMG 132) cultivar. The target spot severity, number of lesions per cm2 of leaflet and area under the disease progress curve were significantly lower for plants from cv. FUNDACEP 59 compared to plants from cv. TMG 132. The GLU, CHI, PAL, POX and PPO activities and the concentration of LTGA derivatives increased significantly, whereas LOX activity decreased significantly on the leaves infected by C. cassiicola. Inoculated plants from cv. FUNDACEP 59 showed a higher PPO activity and concentrations of TSP and LTGA derivatives at 4 and 6 days after inoculation compared to plants from cv. TMG 132. In conclusion, the results of this study demonstrated that the defence‐related enzyme activities increased upon C. cassiicola infection, regardless of the basal level of resistance of the cultivar studied. The increases in PPO activity and concentrations of TSP and LTGA derivatives, but lower LOX activity, at early stages of C. cassiicola infection were highly associated with soybean resistance to target spot.  相似文献   

11.
Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), is a key pest of cultivated pear [Pyrus communis L. (Rosaceae)] in North America and Europe. We examined the effects of foliar applications of three commercially available chemical elicitors of host‐plant defenses — Actigard (acibenzolar‐S‐methyl), Employ (harpin protein), and ODC (chitosan) — on survival, development, feeding, and egg laying of C. pyricola. All three defense elicitors reduced the number of nymphs present on pear (cvs. Bartlett or D'Anjou) 30 days after releasing 10 adults on the trees. Choice assays showed that females settled and oviposited on untreated trees more often than on trees treated with any of the three defense elicitors. Results of no‐choice assays confirmed that the effects of Actigard, Employ, and ODC on C. pyricola were due to activation of systemic plant responses that led to reduced oviposition preference and nymph survival. However, results did not provide evidence that plant responses to elicitors led to reduced nymphal feeding rates or development. Results of our laboratory studies suggest that commercial defense elicitors may be useful in the integrated management of pear psylla once the effects of elicitors at an ecological scale are better understood.  相似文献   

12.
Colletotrichum truncatum was initially described from pepper and has been reported to infect 180 host genera in 55 plant families worldwide. Samples were collected from pepper plants showing typical anthracnose symptoms. Diseased samples after isolation were identified as C. truncatum based on morphological characters and ITS‐rDNA and β‐tubulin sequence data. Intersimple sequence repeat (ISSR) markers were used to estimate genetic diversity in C. truncatum from Malaysia. A set of 3 ISSR primers revealed a total 26 allele from the amplified products. Cluster analysis with UPGMA method clustered C. truncatum isolates into two main groups, which differed with a distance of 0.64. However, the genetic diversity of C. truncatum isolates showed correlation between genetic and geographical distribution, but it failed to reveal a relationship between clustering and pathogenic variability. Phylogenetic analyses discriminated the C. truncatum isolates from other reference Colletotrichum species derived from GenBank. Among the morphological characters, shape, colour of colony and growth rate in culture were partially correlated with the ISSR and phylogenetic grouping. Pathogenicity tests revealed that C. truncatum isolates were causal agents for pepper anthracnose. In the cross‐inoculation assays, C. truncatum isolates were able to produce anthracnose symptoms on tomato, eggplant, onion, lettuce and cabbage. A pathogenicity and cross‐inoculation studies indicated the potential of C. truncatum for virulence and dominancy on plant resistance.  相似文献   

13.
The postharvest anthracnose pathogen Colletotrichum gloeosporioides inciting latent or quiescent infection of mango was detected in early stages using immunoassay methods. Twenty‐five pathotypes isolated from different agroclimatic zones of Tamil Nadu, Karnataka and Pondicherry, India, revealed the variation in protein profile analysis (SDS‐PAGE). The polyclonal antibodies (PCA) were raised against the unfractioned mycelial protein (UMP) and a 40‐kDa polypeptide present in all pathotypes. Standardization of antigen and antiserum dilutions revealed that an antigen dilution of 1 : 200 (protein concentration of 20 μg/ml) and antiserum dilution of 1 : 100 (protein concentration of 40 μg/ml raised against UMP) and 1 : 200 (protein concentration of 20 μg/ml raised against 40 kDa polypeptide) was found to be optimum for the detection of anthracnose pathogen. Both antisera detected the Cgloeosporioides antigen in enzyme‐linked immunosorbent assays (ELISAs), dot immunobinding assays (DIBAs) and Western blots. The specificity in reaction was compared by isolating other Colletotrichum spp. from various hosts viz., Clindemuthianum (beans), Cfalcatum (sugarcane), Cmusae (banana), Ccapsici (chillies) and Botryodiplodia theobromae (mango). The antisera generated against UMP revealed the cross‐reaction with other host isolates and mango stem end rot pathogen (B. theobromae). The PCA raised against 40‐kDa polypeptide exhibited the specific reaction with Cgloeosporioides isolates in all the immunoassay techniques. By utilizing both PCA, the presence of latent infection was observed in healthy‐looking leaves, flowers and fruits in orchard conditions. The fruit tissues recorded high absorbance values followed by flowers and leaves in all the detection methods. The ELISA technique was also useful in assessing the pathogen inoculum at various biocontrol formulations sprayed mango trees under field conditions. The fluorescent pseudomonad strains mixture (KFP1 + FP7) amended with chitin sprayed at 30‐day intervals revealed the significant reduction in pathogen load than other formulations and unsprayed control.  相似文献   

14.
15.
In 2012, dark brown spots were observed on leaves of Ledebouriella seseloides (Fang Feng) in several research plots located at the Goseong Agricultural Research Extension services in Gyeongam Province, Republic of Korea. A fungus was isolated from the infected plants which produced pink‐coloured spores in mucilage on PDA and conidial morphology suggested that the causal agent was Colletotrichum gloeosporioides. Internal transcribed spacer sequences of the pathogen showed 99% identity to those of C. gloeosporioides. Pathogenicity of the isolate was proved by Koch's postulates. This is the first report of anthracnose in L. seseloides caused by C. gloeosporioides.  相似文献   

16.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important diseases on soybean. At the moment, ASR is managed mainly with fungicides due to the absence of commercial cultivars with resistance to this disease. This study evaluated the effects of acibenzolar‐Smethyl (ASM), jasmonic acid (JA), potassium silicate (PS) and calcium silicate (CS) on soybean resistance to ASR. The ASM, JA and PS were sprayed to leaves 24 h prior to inoculation with P. pachyrhizi. The CS was amended to the soil. The incubation period (time from the inoculation until symptoms development) was longer for plants growing in soil amended with CS or sprayed with ASM in comparison with plants sprayed with water (control). Plants sprayed with ASM had longer latent period (time from the inoculation until signs appearance) in comparison with the control plants. Plants sprayed with PS showed fewer uredia per cm² of leaf in relation to the control plants. The ASM and PS were the most effective treatments in reducing the ASR symptoms in contrast to the JA and CS treatments. The JA served as an inducer of susceptibility to ASR.  相似文献   

17.
Downy mildew, caused by the oomycete pathogen Peronospora belbahrii, is a devastating foliar disease of basil in the United States and worldwide. Currently there are very few chemistries or organic choices registered to control this disease. In this study, two systemic acquired resistance (SAR) inducers, acibenzolar‐S‐methyl (ASM) and β‐aminobutyric acid (BABA), were evaluated for their in vitro effects on the pathogen, for their potential to control basil downy mildew in greenhouses, and for changes in peroxidase activity in basil plants treated with these two SAR inducers. No significant inhibition of sporangial germination was detected in water agar amended with ASM at concentrations lower than 100 mg/l or with BABA at concentrations lower than 500 mg/l. Efficacy of ASM and BABA in greenhouses varied depending on the rate, method and timing of application. The area under the disease progress curve (AUDPC) of disease severity was significantly reduced compared to the non‐treated control when ASM was sprayed (in all experiments) or drenched (in one out of two experiments) pre‐, or pre‐ + post‐inoculation at rates of 25–400 mg/l. Three weekly post‐inoculation sprays of ASM at the rate of 50 mg/l reduced AUDPC by 93.0 and 47.2% when started 3 and 7 days after inoculation (DAI), respectively. The AUDPC of disease severity was also significantly reduced when BABA was sprayed pre‐ + post‐inoculation at rates of 125–500 mg/l. According to the prediction using a log‐logistic function, 50% maximum disease protection was achieved at a concentration of 27.5 mg/l of ASM. Basil plants treated with these two SAR inducers and challenged with the pathogen showed significantly higher peroxidase activity than the non‐treated control at 8 DAI. Temporally, the highest activity of peroxidase was detected at 8 DAI, decreased at 15 DAI and waned further at 23 DAI.  相似文献   

18.
Priming of defence genes for amplified response to secondary stress can be induced by application of the plant hormone salicylic acid or its synthetic analogue acibenzolar S‐methyl. In this study, we show that treatment with acibenzolar S‐methyl or pathogen infection of distal leaves induce chromatin modifications on defence gene promoters that are normally found on active genes, although the genes remain inactive. This is associated with an amplified gene response on challenge exposure to stress. Mutant analyses reveal a tight correlation between histone modification patterns and gene priming. The data suggest a histone memory for information storage in the plant stress response.  相似文献   

19.
Blackberry anthracnose, caused by Colletotrichum spp., is an important disease of cultivated blackberry in the world. In Colombia, it is the number one limiting factor for commercial production. This study was conducted to determine the species of Colletotrichum infecting blackberry plants as well as the organ distribution, pathogenicity and response to benomyl of the isolated strains. Sixty isolates from stems (n = 20), thorns (n = 20) and inflorescences (n = 20) were identified as Colletotrichum acutatum and Colletotrichum gloeosporioides by a species‐specific polymerase chain reaction (PCR). Both Colletotrichum species were found in the same plant but on different organs. Colletotrichum gloeosporioides species predominated in thorn lesions (n = 16) and C. acutatum in stems (n = 15) and inflorescence (n = 15). Pathogenicity assays on detached blackberry organs demonstrated differences between the two species with an average period of lesion development of 8.7 days for C. gloeosporioides and 10.3 days for C. acutatum. Wound inoculated organs had 90% disease development compared to 17.5% in non‐wounded. All C. acutatum isolates (n = 34) were benomyl tolerant, whereas C. gloeosporioides isolates (n = 26) were 30.7% sensitive and 69.2% moderately tolerant. Phylogenetic analysis with ITS sequences of a subset of 18 strains showed that strains classified as Cgloeosporioides had 100% identity to Colletotrichum kahawae, which belongs to the C. gloeosporioides species complex, whereas C. acutatum strains clustered into two different groups, with high similarity to the A2 and the A4 molecular groups. These data demonstrate for the first time the differential distribution of both species complexes in blackberry plant organs and further clarifies the taxonomy of the strains.  相似文献   

20.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号