首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined.

Methodology/Principal Findings

Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting.

Conclusions/Significance

In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.  相似文献   

2.
Pediatric tumors of the CNS are the leading cause of cancer-related mortality in children. In pediatric pathology, brain tumors constitute the most frequent solid malignancy. An unparalleled outburst of information in pediatric neuro-oncology research has been witnessed over the last few years, largely due to increased use of high-throughput technologies such as genomics, proteomics and meta-analysis tools. Input from these technologies gives scientists the advantage of early prognosis assessment, more accurate diagnosis and prospective curative intent in the pediatric brain tumor clinical setting. The present review aims to summarize current knowledge on research applying proteomics techniques or proteomics-based approaches performed on pediatric brain tumors. Proteins that can be used as potential disease markers or molecular targets, and their biological significance, are herein listed and discussed. Furthermore, future perspectives that proteomics technologies may offer regarding this devastating disorder are presented.  相似文献   

3.
Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment.  相似文献   

4.
There is growing evidence and a consensus in the field that most pediatric brain tumors originate from stem cells, of which radial glial cells constitute a subtype. Here we show that orthotopic transplantation of human radial glial (RG) cells to the subventricular zone of the 3rd ventricle - but not to other transplantation sites - of the brain in immunocompromised NOD-SCID mice, gives rise to tumors that have the hallmarks of CNS primitive neuroectodermal tumors (PNETs). The resulting mouse model strikingly recapitulates the phenotype of PNETs. Importantly, the observed tumorigenic transformation was accompanied by aspects of an epithelial to mesenchymal transition (EMT)-like process. It is also noteworthy that the tumors are highly invasive, and that they effectively recruit mouse endothelial cells for angiogenesis. These results are significant for several reasons. First, they show that malignant transformation of radial glial cells can occur in the absence of specific mutations or inherited genomic alterations. Second, they demonstrate that the same radial glial cells may either give rise to brain tumors or differentiate normally depending upon the microenvironment of the specific region of the brain to which the cells are transplanted. In addition to providing a prospect for drug screening and development of new therapeutic strategies, the resulting mouse model of PNETs offers an unprecedented opportunity to identify the cancer driving molecular alterations and the microenvironmental factors that are responsible for committing otherwise normal radial glial cells to a malignant phenotype.  相似文献   

5.
Malignant solid tumors and leukemias are the second most common causes of death in childhood. The most frequent pediatric solid tumors are brain tumors. Brain tumors, especially medulloblastoma should be treated by surgery, irradiation and chemotherapy. However, chemotherapy has only moderate effect. Pediatric brain tumors, especially medulloblastomas, express somatostatin receptors. The aim of this study was the investigation of the expression of somatostatin receptors in pediatric brain tumors for diagnostic and therapeutic purpose. Fifty-six scintigraphic imagings (111In-DTPA-D-Phe1-octreotide) made in 45 children treated with brain tumor at the Unit of Oncology of the 2nd Department of Pediatrics, Semmelweis University. The diagnosis was medulloblastoma in 21 cases (46.7%). MRI scans have been performed parallel with the Octreoscan images. Octreoscan images were positive in 27 of 56 (48.2%) cases. The 27 positive Octreoscan images consisted of 16 medulloblastomas, 4 ependymomas, 4 astrocytomas and 3 glioblastomas. In 37 (66.1%) cases the results of Octreoscans were the same as those of the MRI scans. However, in 19 scans (33.9%) the outcome was different. Octreoscan imaging is not suitable for differential diagnosis in pediatric brain tumors, including medulloblastomas. Isotopes specifically binding to the somatostatin receptors (111In-DTPA-D-Phe1-octreotide) can be applied in medulloblastomas for diagnosis and follow-up treatment. In Octreoscan-positive tumors the Octreoscan images establish the opportunity to somatostatin analogue and/or specifically targeted radiation therapies.  相似文献   

6.
Low-grade gliomas represent the most frequent brain tumors arising during childhood. They are characterized by a broad and heterogeneous group of tumors that are currently classified by the WHO according to their morphological appearance. Here we review the clinical features of these tumors, current therapeutic strategies and the recent discovery of genomic alterations characteristic to these tumors. We further explore how these recent biological findings stand to transform the treatment for these tumors and impact the diagnostic criteria for pediatric low-grade gliomas.  相似文献   

7.
Brain tumors are the most common form of solid tumors in children and is presently a serious therapeutic challenge worldwide. Traditional treatment with chemotherapy and radiotherapy was shown to be unsuccessful in targeting brain tumor cancer stem cells (CSCs), leading to recurrent, treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is an effective antitumor therapeutic strategy which offers a novel, targeted approach for eradicating pediatric brain tumor CSCs by utilizing mechanisms of cell killing that differ from conventional therapies. A number of studies and some clinical trials have therefore investigated the effects of combined therapy of radiations or chemotherapies with oncolytic viruses which provide new insights regarding the effectiveness and improvement of treatment responses for brain cancer patients. This review summarizes the current knowledge of the therapeutic potency of OVs-induced CSCs targeting in the treatment of brain tumors for a better understanding and hence a better management of this disease.  相似文献   

8.

Background

Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall survival. To achieve efficient killing of tumor cells, however, immunotherapy has to overcome cancer-associated strategies to evade the cytotoxic immune response. Whether CNS-PNETs can evade the immune response remains unknown.

Methods

We examined by immunohistochemistry the immune response and immune evasion strategies in pediatric CNS-PNETs.

Results

Here, we show that CD4+, CD8+, γδ-T-cells, and Tregs can infiltrate pediatric CNS-PNETs, although the activation status of cytotoxic cells is variable. Pediatric CNS-PNETs evade immune recognition by downregulating cell surface MHC-I and CD1d expression. Intriguingly, expression of SERPINB9, SERPINB1, and SERPINB4 is acquired during tumorigenesis in 29%, 29%, and 57% of the tumors, respectively.

Conclusion

We show for the first time that brain tumors express direct granzyme inhibitors (serpins) as a potential mechanism to overcome cellular cytotoxicity, which may have consequences for cellular immunotherapy.  相似文献   

9.
MicroRNAS (miRNAs) are small endogenous non-coding RNAs that play important roles in many different biological processes including proliferation, differentiation and apoptosis through silencing of target genes. Emerging evidence indicates that miRNAs are key players in mammalian development that, when altered, contribute to tumorigenesis. However, only a few studies to date have focused on the role of miRNAs in medulloblastoma, the most common malignant pediatric brain tumor. These tumors arise in the cerebellum and may attribute their origins to deregulated proliferation of neural progenitor cells during development. Understanding the interplay between normal brain development and medulloblastoma pathogenesis is necessary in order for more efficient, less toxic targeted therapies to be developed and implemented. MiRNA expression profiling of both mouse and human medulloblastomas has led to the identification of signatures correlating with the molecular subgroups of medulloblastoma, tumor diagnosis and response to treatment, as well as novel targets of potential clinical relevance. This review summarizes the recent miRNA literature in both medulloblastoma and normal brain development.  相似文献   

10.

Background

Although, substantial experimental evidence related to diagnosis and treatment of pediatric central nervous system (CNS) neoplasms have been demonstrated, the understanding of the etiology and pathogenesis of the disease remains scarce. Recent microRNA (miRNA)-based research reveals the involvement of miRNAs in various aspects of CNS development and proposes that they might compose key molecules underlying oncogenesis. The current study evaluated miRNA differential expression detected between pediatric embryonal brain tumors and normal controls to characterize candidate biomarkers related to diagnosis, prognosis and therapy.

Methods

Overall, 19 embryonal brain tumors; 15 Medulloblastomas (MBs) and 4 Atypical Teratoid/Rabdoid Tumors (AT/RTs) were studied. As controls, 13 samples were used; The First-Choice Human Brain Reference RNA and 12 samples from deceased children who underwent autopsy and were not present with any brain malignancy. RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed with the mirVANA miRNA isolation kit. The experimental approach included miRNA microarrays covering 1211 miRNAs. Quantitative Real-Time Polymerase Chain Reaction was performed to validate the expression profiles of miR-34a and miR-601 in all 32 samples initially screened with miRNA microarrays and in an additional independent cohort of 30 patients (21MBs and 9 AT/RTs). Moreover, meta-analyses was performed in total 27 embryonal tumor samples; 19 MBs, 8 ATRTs and 121 control samples. Twelve germinomas were also used as an independent validation cohort. All deregulated miRNAs were correlated to patients’ clinical characteristics and pathological measures.

Results

In several cases, there was a positive correlation between individual miRNA expression levels and laboratory or clinical characteristics. Based on that, miR-601 could serve as a putative tumor suppressor gene, whilst miR-34a as an oncogene. In general, miR-34a demonstrated oncogenic roles in all pediatric embryonal CNS neoplasms studied.

Conclusions

Deeper understanding of the aberrant miRNA expression in pediatric embryonal brain tumors might aid in the development of tumor-specific miRNA signatures, which could potentially afford promising biomarkers related to diagnosis, prognosis and patient targeted therapy.
  相似文献   

11.
Radiation dose to the brain and subsequent lifetime risk of diagnosis of radiation-related brain tumors were estimated for pediatric patients undergoing intracranial embolization. Average dose to the whole brain was calculated using dosimetric data from the Radiation Doses in Interventional Radiology Study for 49 pediatric patients who underwent neuroradiological procedures, and lifetime risk of developing radiation-related brain tumors was estimated using published algorithms based on A-bomb survivor data. The distribution of absorbed dose within the brain can vary significantly depending on field size and movement during procedures. Depending on the exposure conditions and age of the patient, organ-averaged brain dose was estimated to vary from 6 to 1600 mGy. The lifetime risk of brain tumor diagnosis was estimated to be increased over the normal background rates (57 cases per 10,000) by 3 to 40% depending on the dose received, age at exposure, and gender. While significant uncertainties are associated with these estimates, we have quantified the range of possible dose and propagated the uncertainty to derive a credible range of estimated lifetime risk for each subject. Collimation and limiting fluoroscopy time and dose rate are the most effective means to minimize dose and risk of future induction of radiation-related tumors.  相似文献   

12.
Polymorphisms and decreased activity of methylenetetrahydrofolate reductase (MTHFR) are linked to disease, including cancer. However, epigenetic regulation has not been thoroughly studied. Our goal was to generate DNA methylation profiles of murine/human MTHFR gene regions and examine methylation in brain and liver tumors. Pyrosequencing in four murine tissues revealed minimal DNA methylation in the CpG island. Higher methylation was seen in liver or intestine in the CpG island shore 5′ to the upstream translational start site or in another region 3′ to the downstream start site. In the latter region, there was negative correlation between expression and methylation. Three orthologous regions were investigated in human MTHFR, as well as a fourth region between the two translation start sites. We found significantly increased methylation in three regions (not the CpG island) in pediatric astrocytomas compared with control brain, with decreased expression in tumors. Methylation in hepatic carcinomas was also increased in the three regions compared with normal liver, but the difference was significant for only one CpG. This work, the first overview of the Mthfr/MTHFR epigenetic landscape, suggests regulation through methylation in some regions, demonstrates increased methylation/decreased expression in pediatric astrocytomas, and should serve as a resource for future epigenetic studies.  相似文献   

13.
Getting at the root and stem of brain tumors   总被引:15,自引:0,他引:15  
Oliver TG  Wechsler-Reya RJ 《Neuron》2004,42(6):885-888
Brain tumors are among the most aggressive and intractable types of cancer. Recent studies indicate that brain tumor cells resemble neural stem cells in terms of phenotype, signaling, and behavior in vitro. In light of these similarities, it has been suggested that brain tumors arise from stem cells, that they co-opt stem cell strategies for self-renewal, and even that they contain "cancer stem cells" that are critical for tumor maintenance. We will examine these possibilities and discuss their implications for the understanding and treatment of brain tumors.  相似文献   

14.
Oncohistones are histones with high-frequency point mutations that are associated with tumorigenesis. Although each histone variant is encoded by multiple genes, a single mutation in one allele of one gene seems to have a dominant effect over global histone H3 methylation level at the relevant amino acid residue. These oncohistones are highly tumor type specific. For example, H3K27M and H3G34V/R mutations occur only in pediatric brain cancers, whereas H3K36M and H3G34W/L have only been found in pediatric bone tumors. H1 mutations also seem to be exclusively linked to lymphomas. In this review, we discuss the occurrence, frequency and potential functional mechanisms of each oncohistone in tumorigenesis of its relevant cancer. We believe that further investigation into the mechanism regarding their tumor type specificity and cancer-related functions will shed new light on their application in cancer diagnosis and targeted therapy development.  相似文献   

15.
Brain tumors are now the leading cause of cancer-related deaths in children under age 15. Malignant gliomas are, for all practical purposes, incurable and new therapeutic approaches are desperately needed. One emerging strategy is to use the tumor tracking capacity inherent in many stem cell populations to deliver therapeutic agents to the brain cancer cells. Current limitations of the stem cell therapy strategy include that stem cells are treated as a single entity and lack of uniform technology is adopted for selection of clinically relevant sub-populations of stem cells. Specifically, therapeutic success relies on the selection of a clinically competent stem cell population based on their capacity of targeting brain tumors. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors is proposed to fill the gap in the current work flow of stem cell-based therapy. The organotypic slice platform has advantages of being mimic in vivo model, easier to manipulate to optimize parameters than in vivo models such as rodents and primates. This model serves as a framework to address the discrepancy between anticipated in vivo results and actual in vivo results, a critical barrier to timely progress in the field of the use of stem cells for the treatment of neurological disorders.  相似文献   

16.

Background

Extraventricular neurocytomas (EVNs) are rare parenchymal brain tumors, distinct from central neurocytomas that are typically located within the supratentorial ventricular system. Seizures and headache represent the most common symptoms of extraventricular neurocytomas in the cerebral hemisphere both in adult and pediatric population.

Case presentation

We describe two cases of pediatric EVN with clinical onset characterized by behavioral and attention deficit/ hyperactivity disorders. The association between behavioral/attention disorders in childhood and the presence of a frontal neurocytoma has never been described before. Furthermore, inappropriate levels of inattention, hyperactivity and impulsivity are common among the neurobehavioral and developmental disorders in childhood. We reviewed 43 pediatric cases of extraventricular neurocytoma included in the PubMed database and their clinical presentation, and we never found this unusual relationship.

Conclusion

In childhood, the attention/hyperactivity disorders seem to be often over-diagnosed. When these deficits are more subtle and do not well-fit in a specific neurocognitive disorder, the clinicians should have a suspicion that they might mask the clinical features of a frontal lesion. This paper is focused on the clinical presentation of the extraventricular neurocytoma and the possible organic etiology of an attention and hyperactivity deficit.
  相似文献   

17.

Background

Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms.

Methods and Findings

To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in β-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas.

Conclusions

The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life.  相似文献   

18.

Introduction

Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS).

Methods

CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat.

Results

Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches.

Conclusions

Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.  相似文献   

19.
20.
Gliomas are the most common primary intracranial tumors. Their distinct ability to infiltrate into the extracellular matrix (ECM) of the brain makes it impossible to treat these tumors using surgery and radiation therapy. A number of different studies have suggested that hyaluronan (HA), the principal glycosaminoglycan (GAG) in the ECM of the brain, is the critical factor for glioma invasion. HA-induced glioma invasion was driven by two important molecular events: matrix metalloproteinase (MMP) secretion and upregulation of cell migration. MMP secretion was triggered by HA-induced focal adhesion kinase (FAK) activation, which transmits its signal through ERK activation and nuclear factor kappa B (NFκB) translocation. Another important molecular event is osteopontin (OPN) expression. OPN expression by AKT activation triggers cell migration. These results suggest that HA-induced glioma invasion is tightly regulated by signaling mechanisms, and a detailed understanding of this molecular mechanism will provide important clues for glioma treatment.Key words: hyaluronan, matrix metalloproteinase, osteopontin, emodin, invasion, gliomaMalignant gliomas are highly invasive and infiltrative tumors that have a poor prognosis with a median survival of only one year.1,2 A major barrier to effective malignant glioma treatment is the invasion of these cells into brain parenchyma. Because of this fact, local therapies such as surgery or radiation therapy are not effective.3 Glioma cells invade through the ECM of the brain by activating a number of coordinated cellular programs, which include those necessary for migration and invasion.3 Therefore, a detailed understanding of the mechanisms underlying this invasive behavior is essential for the development of novel effective therapies.During glioma invasion, tumor cells closely interact with the ECM. Although brain tumor cells may share some of the invasive characteristics with tumors that arise outside of the central nerve system (CNS), the particular structure and composition of the brain ECM suggest the existence of unique invasive mechanisms for brain tumors.4Brain ECM is composed of typical ECM proteins and a HA scaffold with associated glycoproteins and proteoglycans.5 Typical ECM proteins such as laminin, type-IV collagen and fibronectin have been implicated in the invasion of other tumors by regulating cell adhesion and migration.6 However HA, which is associated with proteoglycans and GAGs, is especially abundant in the brain parenchyma compared to other tissues.7 Furthermore, malignant gliomas contain higher amounts of HA than normal brain tissue.7 These facts raise the possibility that HA might play an important role in glioma invasion, a process that is distinct from other non-CNS derived tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号