首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decomposition of emergent macrophytes in a Wisconsin marsh   总被引:6,自引:3,他引:3  
Loss of both dry weight and nutrients during decomposition was measured using litter bags, both in a natural marsh and in controlled experiments. At 348 days dry weight remains of Typha latifolia, Sparganium eurycarpum, Scirpus fluviatilis shoot litter in the marsh were 47.5, 26.9, 51.4% respectively, and for the rootrhizome litter were 59.1, 42.1, 27.8% (Scirpus > Sparganium > Typha). Under controlled conditions both temperature and type of water produced significant effect on dry weight loss of Typha leaves. Sterilization and antibiotics effectively inhibited the growth and activities of decomposers. Initial weight, N, P, Ca, and Mg losses resulted chiefly from leaching. These elements accumulated in spring and summer; N exhibited the highest accumulation. In the laboratory, N accumulation occurred within 15 days, as a result of microorganisms inhabiting the litter. Increase in P, Ca, Mg in later stages of decomposition were attributed to microorganisms, epiphytes, and precipitation from solution. High C : N ratios and relatively low P, Ca, Mg in original standing crop may be the cause of low herbivore consumption, whereas the relative increases in N, P, Ca, Mg in decomposed litter provide a more nutrient-rich substrate for detritivores. Much of the nutrient uptake in the annual cycle is via microbial and detritivore growth rather than by macrophyte producers.  相似文献   

2.
Decomposition rates of Phragmites australis, Carex riparia, Nuphar luteum and Salvinia natans and benthic processes were measured from December 2003 to December 2004 in a shallow wetland (Paludi di Ostiglia, Northern Italy) by means of litter bags and intact cores incubations. Decay rate was highest for N. luteum (k = 0.0152 d−1), intermediate for S. natans (k = 0.0041 d−1) and similar for P. australis (k = 0.0027 d−1) and C. riparia (k = 0.0028 d−1).Benthic metabolism followed a seasonal pattern with summer peaks of O2 demand and TCO2, CH4 and NH4+ efflux whilst soluble reactive phosphorus (SRP) fluxes were negligible also under hypoxic conditions, indicating that P was mainly retained by sediment. The initial C:P ratio was similar in N. luteum and S. natans (170) and significantly lower than that of P. australis and C. riparia (360). During the detritus decay P was progressively lost by N. luteum and S. natans tissues, whereas, after an initial leaching, it was probably re-used during the microbial decomposition of the more refractory P. australis and C. riparia detritus. Nuphar luteum, P. australis and S. natans had comparable initial C:N mass ratio (15), significantly lower than that of C. riparia (26). The C:N ratio was rather constant for N. luteum (12.9 ± 1.5) and S. natans (14.6 ± 0.9), decreased slightly to below 20 for C. riparia and increased up to 30 for P. australis. Overall, differences among species were likely due to the recalcitrance of decomposing detritus, whilst process rates were controlled by limitation of microbial processes by nutrients and electron acceptor availability.  相似文献   

3.
1. Standing dead plant litter of emergent macrophytes frequently constitutes a significant fraction of the detrital mass in many freshwater wetland and littoral habitats. Rates of leaf senescence and decomposition of the emergent macrophyte Juncus effusus were examined in a small freshwater wetland in central Alabama, U.S.A. Juncus effusus leaves in the initial stages of senescence were tagged in random plant tussocks and monitored periodically to determine in situ rates of leaf senescence and death. Fully senescent leaves were collected, placed in litter bags, and suspended above the sediments to simulate standing dead decay conditions. Litter bags were periodically retrieved over 2 years and analysed for weight loss, litter nutrient contents (N, P), associated fungal biomass and fungal taxa. 2. Senescence and death of J. effusus leaves proceeds from the leaf tip to the base at an exponential rate. The rate of senescence and death of leaf tissue increased with increasing temperatures. Plant litter decomposition was slow (k = 0.40 yr–1), with 49% weight loss observed in 2 years. Both the nitrogen (N) and phosphorus (P) concentration (%) of litter increased during decomposition. However, the total amount of nitrogen (mg) in litter bags remained stable and phosphorus increased slightly during the study period. 3. Fungal biomass associated with plant litter, as measured by ergosterol concentrations, varied between 3 and 8% of the total detrital weight. Values were not significantly different among sampling dates (P > 0.05, ANOVA, Tukey). Fungi frequently identified on decaying litter were Drechslera sp., Conioscypha lignicola (Hyphomycetes), Phoma spp. (Coelomycetes), Panellus copelandii and Marasmiellus sp. (Basidiomycota). 4. These results support previous findings that plant litter of emergent macrophytes does not require submergence or collapse to the sediment surface to initiate microbial colonization and litter decomposition.  相似文献   

4.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas.  相似文献   

5.
The role of nutrient availability in the decay of Typha latifolia and Cladium jamaicense litter and associated microbial responses were studied under controlled experimental conditions. The experimental setup consisted of three 14 m2 mesocosms: (i) an experimentally enriched (N&P) mesocosm containing organic soil, (ii) a mesocosm with organic soil but no external enrichment, and (iii) a mesocosm with no external nutrient inputs and a mineral soil, each equally divided into two areas predominated by T. latifolia and C. jamaicense. Air dried senesced material of each plant species from the three units were placed in litterbags and were introduced back into their respective communities on the soil and water interface. Litter from T. latifolia degraded significantly faster than that of C. jamaicense. The half life of T. latifolia litter averaged approximately 274 days, C. jamaicense litter half life was extrapolated to approximately 377 days. Nutrient enrichment significantly increased the decay rates of T. latifolia, the nutrient effect on C. jamaicense decomposition was less apparent. The microbial biomass carbon in T. latifolia and C. jamaicense litter increased significantly as the litter decomposed. No significant differences between the litter types or amongst mesocosms were found. The relative activities of the extracellular enzymes acid phosphatase and β-glucosidase were significantly (P < 0.001 and P = 0.0284, respectively) affected by litter type and mesocosm over time. Litter associated alkaline phosphatase activity was largest in the mineral mesocosm, followed by the organic control and then organic enriched irrespective of litter type, β-glucosidase activity showed an inverse effect, enriched organic > organic control > mineral. The litter CO2 and CH4 microbial production rates showed a significant litter type and mesocosm effect (P = 0.0003 and 0.001, respectively). T. latifolia litter had larger associated methanogenic and microbial respiration rates than C. jamaicense litter. Nutrient enrichment enhanced both forms of microbial metabolic activities (CO2 and CH4 production). The effect of nutrient enrichment was primarily evident in the initial (3–6 months) period of decay, extracellular enzyme activities and the litter associated microbial metabolic activities showed most response during this decay stage.  相似文献   

6.
Over the last decades, the abundance of common reed has significantly increased in freshwater wetlands of eastern North America, and stands of this species are now commonly alternating with stands of cattails. Since these species share many characteristics, the contact zone between common reed and cattail stands may witness strong interspecific interactions. We surveyed stand dynamics in roadside ditches and freshwater marshes at these contact zones over three years, and we examined the morphological plasticity in response to neighbors. Results indicate that common reed is clearly gaining ground over time, while cattails stands are retreating. We also found annual variability in the spatial dynamics, suggesting that other factors, such as the effect of weather conditions on water level, may affect population processes. Interspecific interactions had a detrimental effect on both common reed and cattail biomass. However, common reed showed morphological plasticity in shoot height, number of nodes, and internodes length, while cattails did not. Our observations suggest that common reed has a net competitive advantage over cattails in roadside ditches and freshwater marshes.  相似文献   

7.
三江平原沼泽湿地枯落物分解及其营养动态   总被引:36,自引:0,他引:36  
分解袋法研究了三江平原典型沼泽湿地枯落物的分解速率和N、P营养动态.湿地枯落物的分解速率(0.000612~0.000945 d^-1)在群落间差异显著,分解480d,分别损失初始重的45.36%(Carexpseudocuraica)、35.32%(Carex lasiocarpa)、33.72%(Deyeuxia angustifolia)和29.13%(Deyeuxia angustifolia-Shrub),即随淹水深度由大到小、淹水时间由长到短,枯落物分解由快到慢,说明湿地的淹水状况是影响枯落物分解速率的主要因素.分解过程中,漂筏苔草和毛果苔草枯落物N浓度持续上升,N在枯落物中积累;小叶章枯落物N浓度在第1个月快速下降而后缓慢上升,分解使枯落物释放N.各类枯落物P浓度的变化大致呈不同程度的降低趋势,分解使湿地枯落物均发生P释放.结果表明,微生物的营养需求状况决定了湿地枯落物N、P的动态变化,而其积累或释放的强度则可能与枯落物初始C:N和C:P的大小有关.  相似文献   

8.
Yang J S  Liu J S  Yu J B  Wang J D  Li X H  Sun Z G 《农业工程》2006,26(5):1297-1301
The litterbag technique was used to study the decomposition and nutrient dynamics of marsh litter in the four communities, Carex pseudocuraica (C.pa), C. lasiocarpa (C.la), Deyeuxia angustifolia (D.aa), and D. angustifolia-Shrub (D.aa-Srb), in Sanjiang Plain, Northeast China. Decomposition was divided into two periods in the first year, with the mass loss ranging from 11.7% to 31.4% of the initial mass during summer and autumn, accounting for more than 75% of the annual loss. The decomposition rates ranged from 0.000 612 to 0.000 945 d-1 depending on the depth of the flooding and its duration, and differed significantly in each community. The litter decomposed faster in communities with deeper and perennial flooding than in those with shallow and seasonal flooding. The initial ratios of C:N and C:P were also different among the four litter types, but these differences had no impact on the decomposition rates, suggesting that the main factor influencing the decomposition rates of marsh litter was the flooding status rather than the litter quality. The N concentrations in C.pa and C.la almost continuously increased over time, with their final values being 2.8 and 2.4 times higher than the initial ones, respectively. However, the nutrient dynamics in D.aa and D.aa-Srb offered another pattern, sharply falling in the first month and then gradually rising, with the values at the end of the experiment being close to those at the beginning. The litter accumulated substantial amounts of N in C.pa and C.la, while net N release from the litter was observed in both D.aa and D.aa-Srb. The difference may be caused by microorganisms' demand for nutrition, and then limited by the C:N ratios of litter and the availability of nitrogen from the soil and marsh water. In contrast with N dynamics, P concentrations of all the litter types apparently decreased during the first month, and then continued to decline in C.pa, remained constant in C.la and D.aa and increased slightly in D.aa-Srb. At the end of the experiment, the P concentrations decreased, respectively, by 56%, -5%, 47% and 24% of the initial values of C.la, C. pa, D.aa and D.aa-Srb. The net P release was observed in all marsh litter over 480 days of decomposition and the intensity of the P release was different amongst communities, which may be regulated by ratios of initial C:P. The results suggested that in the marsh with the N limitation, litter tended to accumulate N and release P during decomposition and the intensity of accumulation or release was closely related to the initial C:N and C:P ratios.  相似文献   

9.
The litterbag technique was used to study the decomposition and nutrient dynamics of marsh litter in the four communities, Carex pseudocuraica (C.pa), C. lasiocarpa (C.la), Deyeuxia angustifolia (D.aa), and D. angustifolia-Shrub (D.aa-Srb), in Sanjiang Plain, Northeast China. Decomposition was divided into two periods in the first year, with the mass loss ranging from 11.7% to 31.4% of the initial mass during summer and autumn, accounting for more than 75% of the annual loss. The decomposition rates ranged from 0.000 612 to 0.000 945 d?1 depending on the depth of the flooding and its duration, and differed significantly in each community. The litter decomposed faster in communities with deeper and perennial flooding than in those with shallow and seasonal flooding. The initial ratios of C:N and C:P were also different among the four litter types, but these differences had no impact on the decomposition rates, suggesting that the main factor influencing the decomposition rates of marsh litter was the flooding status rather than the litter quality. The N concentrations in C.pa and C.la almost continuously increased over time, with their final values being 2.8 and 2.4 times higher than the initial ones, respectively. However, the nutrient dynamics in D.aa and D.aa-Srb offered another pattern, sharply falling in the first month and then gradually rising, with the values at the end of the experiment being close to those at the beginning. The litter accumulated substantial amounts of N in C.pa and C.la, while net N release from the litter was observed in both D.aa and D.aa-Srb. The difference may be caused by microorganisms' demand for nutrition, and then limited by the C:N ratios of litter and the availability of nitrogen from the soil and marsh water. In contrast with N dynamics, P concentrations of all the litter types apparently decreased during the first month, and then continued to decline in C.pa, remained constant in C.la and D.aa and increased slightly in D.aa-Srb. At the end of the experiment, the P concentrations decreased, respectively, by 56%, ?5%, 47% and 24% of the initial values of C.la, C. pa, D.aa and D.aa-Srb. The net P release was observed in all marsh litter over 480 days of decomposition and the intensity of the P release was different amongst communities, which may be regulated by ratios of initial C:P. The results suggested that in the marsh with the N limitation, litter tended to accumulate N and release P during decomposition and the intensity of accumulation or release was closely related to the initial C:N and C:P ratios.  相似文献   

10.
The growth strategy of an emergent plant, Typha orientalis Presl, was examined in experimental ponds in comparison with two other Typha species distributed in Japan, Typha latifolia L. and Typha angustifolia L. T. orientalis showed the greatest ability of vegetative reproduction at the expense of growth in height. T. orientalis started to produce new ramets earlier than T. latifolia and T. angustifolia. These results suggest that T. orientalis should be a rather pioneer-like species and would be restricted to disturbed habitats.  相似文献   

11.
We investigated the effect of CO2 concentration and soilnutrient availability during growth on the subsequent decomposition andnitrogen (N) release from litter of four annual grasses that differ inresource requirements and native habitat. Vulpia microstachys isa native grass found on California serpentine soils, whereas Avenafatua, Bromus hordaceus, and Lolium multiflorum areintroduced grasses restricted to more fertile sandstone soils (Hobbs & Mooney 1991). Growth in elevated CO2 altered litter C:N ratio,decomposition, and N release, but the direction and magnitude of thechanges differed among plant species and nutrient treatments. ElevatedCO2 had relatively modest effects on C:N ratio of litter,increasing this ratio in Lolium roots (and shoots at high nutrients),but decreasing C:N ratio in Avena shoots. Growth of plants underelevated CO2 decreased the decomposition rate of Vulpialitter, but increased decomposition of Avena litter from the high-nutrient treatment. The impact of elevated CO2 on N loss fromlitter also differed among species, with Vulpia litter from high-CO2 plants releasing N more slowly than ambient-CO2litter, whereas growth under elevated CO2 caused increased Nloss from Avena litter. CO2 effects on N release in Lolium and Bromus depended on the nutrient regime in whichplants were grown. There was no overall relationship between litter C:Nratio and decomposition rate or N release across species and treatments.Based on our study and the literature, we conclude that the effects ofelevated CO2 on decomposition and N release from litter arehighly species-specific. These results do not support the hypothesis thatCO2 effects on litter quality consistently lead to decreasednutrient availability in nutrient-limited ecosystems exposed to elevatedCO2.  相似文献   

12.
13.
The responses of root aerobic respiration to hypoxia in three common Typha species were examined. Typha latifolia L., T. orientalis Presl, and T. angustifolia L. were hydroponically cultivated under both aerobic and hypoxic growth conditions to measure root oxygen consumption rates. Hypoxia significantly enhanced the root aerobic respiration capacity of the two deep-water species, T. orientalis and T. angustifolia, while it did not affect that of the shallow-water species, T. latifolia. T. angustifolia increased its root porosity and root mass ratio, while T. latifolia increased its root diameter under the hypoxic growth conditions. The relative growth rates in biomass of T. orientalis and T. angustifolia were 59 and 39% higher, respectively, under the hypoxic growth conditions than under the aerobic growth conditions. In contrast, that of T. latifolia did not differ between the two conditions. In T. orientalis and T. angustifolia, enhanced root aerobic respiration rates under the hypoxic growth conditions would have increased the nutrient uptake, and thus higher relative growth rates were obtained. For the deep-water species, T. orientalis and T. angustifolia, the root aerobic respiration capacity was enhanced, probably in order to maintain the generation of respiratory energy under hypoxia.  相似文献   

14.
Winter regulation of tundra litter carbon and nitrogen dynamics   总被引:4,自引:3,他引:4  
Mass and nitrogen (N) dynamics of leaf litter measured in Alaskan tussock tundra differed greatly from measurements of these processes made in temperate ecosystems. Nearly all litter mass and N loss occurred during the winter when soils were mostly frozen. Litter lost mass during the first summer, but during the subsequent two summers when biological activity was presumably higher than it is during winter, litter mass remained constant and litter immobilized N. By contrast, litter lost significant mass and N over both winters of measurement. Mass loss and N dynamics were unaffected by microsite variation in soil temperature and moisture. Whether wintertime mass and N loss resulted from biological activity during winter or from physical processes (e.g., fragmentation or leaching) associated with freeze-thaw is unknown, but has implications for how future climate warming will alter carbon (C) and N cycling in tundra. We hypothesize that spring runoff over permafrost as soils melt results in significant losses of C and N from litter, consistent with the observed influx of terrestrial organic matter to tundra lakes and streams after snow melt and the strong N limitation of terrestrial primary production.  相似文献   

15.
The effect of seasonal inundation on the decomposition of emergent macrophyte litter (Scolochloa festucacea) was examined under experimental flooding regimes in a northern prairie marsh. Stem and leaf litter was subjected to six aboveground inundation treatments (ranging from never flooded to flooded April through October) and two belowground treatments (nonflooded and flooded April to August). Flooding increased the rate of mass loss from litter aboveground but retarded decay belowground. Aboveground, N concentration decreased and subsequently increased earlier in the longer flooded treatments, indicating that flooding decreased the time that litter remained in the leaching and immobilization phases of decay. Belowground, both flooded and nonflooded litter showed an initial rapid loss of N, but concentration and percent of original N remaining were greater in the nonflooded marsh throughout the first year. This suggested that more N was immobilized on litter under the nonflooded, more oxidizing soil conditions. Both N concentration and percent N remaining of belowground litter were greater in the flooded than the nonflooded marsh the second year, suggesting that N immobilization was enhanced after water-level drawdown. These results suggest different mechanisms by which flooding affects decomposition in different wetland environments. On the soil surface where oxygen is readily available, flooding accelerates decomposition by increasing moisture. Belowground, flooding creates anoxic conditions that slow decay. The typical hydrologic pattern in seasonally flooded prairie marshes of spring flooding followed by water-level drawdown in summer may maximize system decomposition rates by allowing rapid decomposition aboveground in standing water and by annually alleviating soil anoxia.  相似文献   

16.
Xu  Xiaoniu  Hirata  Eiji  Enoki  Tsutomu  Tokashiki  Yoshihiro 《Plant Ecology》2004,173(2):161-170
Decomposition of typhoon-generated and normal leaf litter and their release patterns for eight nutrient elements were investigated over 3 yr using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. Two common tree species, Castanopsis sieboldii and Schima wallichii, representative of the vegetation and differing in their foliar traits, were selected. The elements analyzed were N, P, K, Ca, Mg, Na, Al, Fe and Mn. Dry mass loss at the end of study varied in the order: typhoon green leaves > typhoon yellow leaves > normal leaves falling for both species. For the same litter type, Schima decomposed faster than Castanopsis. Dry mass remaining after 2 yr of decomposition was positively correlated with initial C:N and C:P ratios. There was a wide range in patterns of nutrient concentration, from a net accumulation to a rapid loss in decomposition. Leaf litter generated by typhoons decomposed more rapidly than did the normal litter, with rapid losses for N and P. Analysis of initial quality for the different litter types showed that the C:P ratios were extremely high (range 896 – 2467) but the P:N ratios were < 0.05 (range 0.02 – 0.04), indicating a likely P-limitation for this forest. On average 32% less N and 60% less P was retranslocated from the typhoon-generated green leaves than from the normal litter for the two species, Castanopsis and Schima. An estimated 2.13 g m–2 yr–1 more N and 0.07 g m–2 yr–1 more P was transferred to the soil as result of typhoon disturbances, which were as high as 52% of N and 74% of P inputted from leaf litter annually in a normal year. Typhoon-driven maintenance of rapid P cycling appears to be an important mechanism by which growth of this Okinawan subtropical forest is maintained.  相似文献   

17.
The contribution of sediment interstitial water and the water column to the transpiration stream of Myriophyllum aquaticum (Vellozo) Verdcourt was determined to estimate the significance of mass flow in supply of sediment nutrients for plant growth. Sediment interstitial water accounted for about 2% of the water transpired over a 37 day period. Because of the small volume of water that originated in the sediment we concluded that mass flow did not significantly enhance nutrient supply to the roots of M. aquaticum. Relative growth rate (RGR) of adventitious, water roots was greater than whole plant RGR, and RGR of sediment roots was not significantly different from zero, indicating a shift in the biomass allocation after emergence of the apical meristem into the air. Water use, measured by the transpiration coefficient, averaged 260 ml H2O mg DW-1, which is similar to C-4 terrestrial plants. M. aquaticum has leaf characteristics commonly associated with xerophytic habitats. These characteristics may be necessary if a high transpiration rate and a mechanical requirement for high cell turgor pressure, required by a reliance upon hydrostatic pressure for support of the aerial stems, are mutually exclusive because of morphological constraints on hydraulic conductivity.  相似文献   

18.
19.
From studies on living plant tissues it has been inferred that elevated UV‐B radiation could negatively affect litter quality and subsequent decomposition. However, in general, the effects of UV‐B radiation on litter chemistry and decomposition reported in the literature are variable and are often only marginally (if at all) significant. This might be due to the ecologically unrealistic conditions under which these experiments were performed. We investigated the effects of elevated UV‐B radiation on litter quality and subsequent decomposition on initial litter chemistry and long‐term (2 years) decomposition of freshly senesced Carex arenaria and Calamagrostis epigejos leaf litter under ecologically realistic conditions. This material was collected from a dune grassland that had received UV‐B radiation treatments for three growing seasons. It was then used in a 2‐year decomposition study using litter bags. We found no significant effects of elevated UV‐B radiation on any of the litter chemistry parameters in either of the two species, nor did we find significant effects on litter decomposition. However, we did find significant differences in litter decomposition between the species. These differences were related to the interspecific differences in litter chemistry, particularly the litter phenolics concentration. These results show that litter quality and decomposition in dune grasslands are, also under ecologically realistic conditions, not affected by UV‐B radiation. Instead, litter decomposition is determined by constitutive interspecific differences in litter chemistry. In conclusion, with our results added to the already existing literature, the preponderance of evidence now clearly suggests that elevated UV‐B radiation has very little, if any, impact on litter quality and subsequent decomposition in real ecosystems.  相似文献   

20.
The essential oils of the leaves of Eugenia acutata, Eugenia candolleana, Eugenia copacabanensis and Myrcia splendens (Myrtaceae) from Brazil’s southeastern Atlantic Forest were obtained by hydrodistillation and analyzed by GC–MS. Oxygenated sesquiterpenes were predominant in E. copacabanensis (54.3%) and E. candolleana (50.9%) whilst hydrocarbon species predominated in E. acutata (83.4%) and M. splendens (94.5%). trans-Caryophyllene was the most abundant component in E. acutata. Isomers of guaiol and cadinol alcohols, followed by δ-elemene and viridiflorene, were the major components of the essential oil of the leaves of E. candolleana. Hydrocarbons and alcohols of the cadinane-type predominated in E. copacabanensis the most abundant being epi-cubenol (14%). M. splendens had 80% α-bisabolene in the leaf oil along with <5% β-farnesene. Additionally, E. copacabanensis exhibited 13.7% monoterpenes. Whereas the bisabolene-rich M. splendens oil is highly similar to that of other Myrcia species reported elsewhere, the Eugenia species oils corroborated the complex array and differing abundances of terpene classes within this genus. This study generated data which may provide further comprehension of the phylogenetic relationships between Myrtaceae genera and species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号