首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel method has been developed for acquiring the correct alignment of a query sequence against remotely homologous proteins by extracting structural information from profiles of multiple structure alignment. A systematic search algorithm combined with a group of score functions based on sequence information and structural information has been introduced in this procedure. A limited number of top solutions (15,000) with high scores were selected as candidates for further examination. On a test-set comprising 301 proteins from 75 protein families with sequence identity less than 30%, the proportion of proteins with completely correct alignment as first candidate was improved to 39.8% by our method, whereas the typical performance of existing sequence-based alignment methods was only between 16.1% and 22.7%. Furthermore, multiple candidates for possible alignment were provided in our approach, which dramatically increased the possibility of finding correct alignment, such that completely correct alignments were found amongst the top-ranked 1000 candidates in 88.3% of the proteins. With the assistance of a sequence database, completely correct alignment solutions were achieved amongst the top 1000 candidates in 94.3% of the proteins. From such a limited number of candidates, it would become possible to identify more correct alignment using a more time-consuming but more powerful method with more detailed structural information, such as side-chain packing and energy minimization, etc. The results indicate that the novel alignment strategy could be helpful for extending the application of highly reliable methods for fold identification and homology modeling to a huge number of homologous proteins of low sequence similarity. Details of the methods, together with the results and implications for future development are presented.  相似文献   

2.
Two new sets of scoring matrices are introduced: H2 for the protein sequence comparison and T2 for the protein sequence-structure correlation. Each element of H2 or T2 measures the frequency with which a pair of amino acid types in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types (for H2) or in given structural states (for T2), in other structurally homologous proteins. There are four types, corresponding to the k-values of 1 to 4, for both H2 and T2. These matrices were set up using a large number of structurally homologous protein pairs, with little sequence homology between the pair, that were recently generated using the structure comparison program SHEBA. The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-Waterman (SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 and H2 matrices; and PASSC, which used Blosum62, H2, and T2 matrices. All procedures gave similar results when the probe and target sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave the next best results.  相似文献   

3.
Structural alignments often reveal relationships between proteins that cannot be detected using sequence alignment alone. However, profile search methods based entirely on structural alignments alone have not been found to be effective in finding remote homologs. Here, we explore the role of structural information in remote homolog detection and sequence alignment. To this end, we develop a series of hybrid multidimensional alignment profiles that combine sequence, secondary and tertiary structure information into hybrid profiles. Sequence-based profiles are profiles whose position-specific scoring matrix is derived from sequence alignment alone; structure-based profiles are those derived from multiple structure alignments. We compare pure sequence-based profiles to pure structure-based profiles, as well as to hybrid profiles that use combined sequence-and-structure-based profiles, where sequence-based profiles are used in loop/motif regions and structural information is used in core structural regions. All of the hybrid methods offer significant improvement over simple profile-to-profile alignment. We demonstrate that both sequence-based and structure-based profiles contribute to remote homology detection and alignment accuracy, and that each contains some unique information. We discuss the implications of these results for further improvements in amino acid sequence and structural analysis.  相似文献   

4.
An appropriate structural superposition identifies similarities and differences between homologous proteins that are not evident from sequence alignments alone. We have coupled our Gaussian‐weighted RMSD (wRMSD) tool with a sequence aligner and seed extension (SE) algorithm to create a robust technique for overlaying structures and aligning sequences of homologous proteins (HwRMSD). HwRMSD overcomes errors in the initial sequence alignment that would normally propagate into a standard RMSD overlay. SE can generate a corrected sequence alignment from the improved structural superposition obtained by wRMSD. HwRMSD's robust performance and its superiority over standard RMSD are demonstrated over a range of homologous proteins. Its better overlay results in corrected sequence alignments with good agreement to HOMSTRAD. Finally, HwRMSD is compared to established structural alignment methods: FATCAT, secondary‐structure matching, combinatorial extension, and Dalilite. Most methods are comparable at placing residue pairs within 2 Å, but HwRMSD places many more residue pairs within 1 Å, providing a clear advantage. Such high accuracy is essential in drug design, where small distances can have a large impact on computational predictions. This level of accuracy is also needed to correct sequence alignments in an automated fashion, especially for omics‐scale analysis. HwRMSD can align homologs with low‐sequence identity and large conformational differences, cases where both sequence‐based and structural‐based methods may fail. The HwRMSD pipeline overcomes the dependency of structural overlays on initial sequence pairing and removes the need to determine the best sequence‐alignment method, substitution matrix, and gap parameters for each unique pair of homologs. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Wu S  Zhang Y 《Proteins》2008,72(2):547-556
We develop a new threading algorithm MUSTER by extending the previous sequence profile-profile alignment method, PPA. It combines various sequence and structure information into single-body terms which can be conveniently used in dynamic programming search: (1) sequence profiles; (2) secondary structures; (3) structure fragment profiles; (4) solvent accessibility; (5) dihedral torsion angles; (6) hydrophobic scoring matrix. The balance of the weighting parameters is optimized by a grading search based on the average TM-score of 111 training proteins which shows a better performance than using the conventional optimization methods based on the PROSUP database. The algorithm is tested on 500 nonhomologous proteins independent of the training sets. After removing the homologous templates with a sequence identity to the target >30%, in 224 cases, the first template alignment has the correct topology with a TM-score >0.5. Even with a more stringent cutoff by removing the templates with a sequence identity >20% or detectable by PSI-BLAST with an E-value <0.05, MUSTER is able to identify correct folds in 137 cases with the first model of TM-score >0.5. Dependent on the homology cutoffs, the average TM-score of the first threading alignments by MUSTER is 5.1-6.3% higher than that by PPA. This improvement is statistically significant by the Wilcoxon signed rank test with a P-value < 1.0 x 10(-13), which demonstrates the effect of additional structural information on the protein fold recognition. The MUSTER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/MUSTER.  相似文献   

6.
Zhou H  Zhou Y 《Proteins》2005,58(2):321-328
Recognizing structural similarity without significant sequence identity has proved to be a challenging task. Sequence-based and structure-based methods as well as their combinations have been developed. Here, we propose a fold-recognition method that incorporates structural information without the need of sequence-to-structure threading. This is accomplished by generating sequence profiles from protein structural fragments. The structure-derived sequence profiles allow a simple integration with evolution-derived sequence profiles and secondary-structural information for an optimized alignment by efficient dynamic programming. The resulting method (called SP(3)) is found to make a statistically significant improvement in both sensitivity of fold recognition and accuracy of alignment over the method based on evolution-derived sequence profiles alone (SP) and the method based on evolution-derived sequence profile and secondary structure profile (SP(2)). SP(3) was tested in SALIGN benchmark for alignment accuracy and Lindahl, PROSPECTOR 3.0, and LiveBench 8.0 benchmarks for remote-homology detection and model accuracy. SP(3) is found to be the most sensitive and accurate single-method server in all benchmarks tested where other methods are available for comparison (although its results are statistically indistinguishable from the next best in some cases and the comparison is subjected to the limitation of time-dependent sequence and/or structural library used by different methods.). In LiveBench 8.0, its accuracy rivals some of the consensus methods such as ShotGun-INBGU, Pmodeller3, Pcons4, and ROBETTA. SP(3) fold-recognition server is available on http://theory.med.buffalo.edu.  相似文献   

7.
Alignment of protein sequences is a key step in most computational methods for prediction of protein function and homology-based modeling of three-dimensional (3D)-structure. We investigated correspondence between "gold standard" alignments of 3D protein structures and the sequence alignments produced by the Smith-Waterman algorithm, currently the most sensitive method for pair-wise alignment of sequences. The results of this analysis enabled development of a novel method to align a pair of protein sequences. The comparison of the Smith-Waterman and structure alignments focused on their inner structure and especially on the continuous ungapped alignment segments, "islands" between gaps. Approximately one third of the islands in the gold standard alignments have negative or low positive score, and their recognition is below the sensitivity limit of the Smith-Waterman algorithm. From the alignment accuracy perspective, the time spent by the algorithm while working in these unalignable regions is unnecessary. We considered features of the standard similarity scoring function responsible for this phenomenon and suggested an alternative hierarchical algorithm, which explicitly addresses high scoring regions. This algorithm is considerably faster than the Smith-Waterman algorithm, whereas resulting alignments are in average of the same quality with respect to the gold standard. This finding shows that the decrease of alignment accuracy is not necessarily a price for the computational efficiency.  相似文献   

8.
Analysis of protein structures based on backbone structural patterns known as structural alphabets have been shown to be very useful. Among them, a set of 16 pentapeptide structural motifs known as protein blocks (PBs) has been identified and upon which backbone model of most protein structures can be built. PBs allows simplification of 3D space onto 1D space in the form of sequence of PBs. Here, for the first time, substitution probabilities of PBs in a large number of aligned homologous protein structures have been studied and are expressed as a simplified 16 x 16 substitution matrix. The matrix was validated by benchmarking how well it can align sequences of PBs rather like amino acid alignment to identify structurally equivalent regions in closely or distantly related proteins using dynamic programming approach. The alignment results obtained are very comparable to well established structure comparison methods like DALI and STAMP. Other interesting applications of the matrix have been investigated. We first show that, in variable regions between two superimposed homologous proteins, one can distinguish between local conformational differences and rigid-body displacement of a conserved motif by comparing the PBs and their substitution scores. Second, we demonstrate, with the example of aspartic proteinases, that PBs can be efficiently used to detect the lobe/domain flexibility in the multidomain proteins. Lastly, using protein kinase as an example, we identify regions of conformational variations and rigid body movements in the enzyme as it is changed to the active state from an inactive state.  相似文献   

9.
We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non-redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508-519; Proteins 2000;40:502-511). We have introduced a variable size window that allowed us to include sequences as short as 20-30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI-BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack-knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI-BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540-553; Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Polymer 2002;43:441-449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220-223).  相似文献   

10.
Sequence comparisons of highly related archaeal adenylate kinases (AKs) from the mesophilic Methanococcus voltae, the moderate thermophile Methanococcus thermolithotrophicus, and two extreme thermophiles Methanococcus igneus and Methanococcus jannaschii, allow identification of interactions responsible for the large variation in temperatures for optimal catalytic activity and thermostabilities observed for these proteins. The tertiary structures of the methanococcal AKs have been predicted by using homology modeling to further investigate the potential role of specific interactions on thermal stability and activity. The alignments for the methanococcal AKs have been generated by using an energy-based sequence–structure threading procedure against high-resolution crystal structures of eukaryotic, eubacterial, and mitochondrial adenylate and uridylate (UK) kinases. From these alignments, full atomic model structures have been produced using the program MODELLER. The final structures allow identification of potential active site interactions and place a polyproline region near the active site, both of which are unique to the archaeal AKs. Based on these model structures, the additional polar residues present in the thermophiles could contribute four additional salt bridges and a higher negative surface charge. Since only one of these possible salt bridges is interior, they do not appear significantly to the thermal stability. Instead, our model structures indicate that a larger and more hydrophobic core, due to a specific increase in aliphatic amino acid content and aliphatic side chain volume, in the thermophilic AKs is responsible for increased thermal stability. © 1997 Wiley-Liss Inc.  相似文献   

11.
Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template‐defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile‐based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa . Proteins 2015; 83:411–427. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

13.
Molecular modeling of proteins is confronted with the problem of finding homologous proteins, especially when few identities remain after the process of molecular evolution. Using even the most recent methods based on sequence identity detection, structural relationships are still difficult to establish with high reliability. As protein structures are more conserved than sequences, we investigated the possibility of using protein secondary structure comparison (observed or predicted structures) to discriminate between related and unrelated proteins sequences in the range of 10%-30% sequence identity. Pairwise comparison of secondary structures have been measured using the structural overlap (Sov) parameter. In this article, we show that if the secondary structures likeness is >50%, most of the pairs are structurally related. Taking into account the secondary structures of proteins that have been detected by BLAST, FASTA, or SSEARCH in the noisy region (with high E: value), we show that distantly related protein sequences (even with <20% identity) can be still identified. This strategy can be used to identify three-dimensional templates in homology modeling by finding unexpected related proteins and to select proteins for experimental investigation in a structural genomic approach, as well as for genome annotation.  相似文献   

14.
Armando D. Solis 《Proteins》2015,83(12):2198-2216
To reduce complexity, understand generalized rules of protein folding, and facilitate de novo protein design, the 20‐letter amino acid alphabet is commonly reduced to a smaller alphabet by clustering amino acids based on some measure of similarity. In this work, we seek the optimal alphabet that preserves as much of the structural information found in long‐range (contact) interactions among amino acids in natively‐folded proteins. We employ the Information Maximization Device, based on information theory, to partition the amino acids into well‐defined clusters. Numbering from 2 to 19 groups, these optimal clusters of amino acids, while generated automatically, embody well‐known properties of amino acids such as hydrophobicity/polarity, charge, size, and aromaticity, and are demonstrated to maintain the discriminative power of long‐range interactions with minimal loss of mutual information. Our measurements suggest that reduced alphabets (of less than 10) are able to capture virtually all of the information residing in native contacts and may be sufficient for fold recognition, as demonstrated by extensive threading tests. In an expansive survey of the literature, we observe that alphabets derived from various approaches—including those derived from physicochemical intuition, local structure considerations, and sequence alignments of remote homologs—fare consistently well in preserving contact interaction information, highlighting a convergence in the various factors thought to be relevant to the folding code. Moreover, we find that alphabets commonly used in experimental protein design are nearly optimal and are largely coherent with observations that have arisen in this work. Proteins 2015; 83:2198–2216. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The detection of remote homolog pairs of proteins using computational methods is a pivotal problem in structural bioinformatics, aiming to compute protein folds on the basis of information in the database of known structures. In the last 25 years, several methods have been developed to tackle this problem, based on different approaches including sequence-sequence alignments and/or structure comparison. In this article, we will briefly discuss When, Why, Where and How (WWWH) to perform remote homology search, reviewing some of the most widely adopted computational approaches. The specific aim is highlighting the basic criteria implemented by different research groups and commenting on the status of the art as well as on still-open questions.  相似文献   

16.
The analysis of sequence conservation is commonly used to predict functionally important sites in proteins. We have developed an approach that first identifies highly conserved sites in a set of orthologous sequences using a weighted substitution‐matrix‐based conservation score and then filters these conserved sites based on the pattern of conservation present in a wider alignment of sequences from the same family and structural information to identify surface‐exposed sites. This allows us to detect specific functional sites in the target protein and exclude regions that are likely to be generally important for the structure or function of the wider protein family. We applied our method to two members of the serpin family of serine protease inhibitors. We first confirmed that our method successfully detected the known heparin binding site in antithrombin while excluding residues known to be generally important in the serpin family. We next applied our sequence analysis approach to neuroserpin and used our results to guide site‐directed polyalanine mutagenesis experiments. The majority of the mutant neuroserpin proteins were found to fold correctly and could still form inhibitory complexes with tissue plasminogen activator (tPA). Kinetic analysis of tPA inhibition, however, revealed altered inhibitory kinetics in several of the mutant proteins, with some mutants showing decreased association with tPA and others showing more rapid dissociation of the covalent complex. Altogether, these results confirm that our sequence analysis approach is a useful tool that can be used to guide mutagenesis experiments for the detection of specific functional sites in proteins. Proteins 2015; 83:135–152. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Rai BK  Fiser A 《Proteins》2006,63(3):644-661
A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.  相似文献   

18.
Goonesekere NC  Lee B 《Proteins》2008,71(2):910-919
The sequence homology detection relies on score matrices, which reflect the frequency of amino acid substitutions observed in a dataset of homologous sequences. The substitution matrices in popular use today are usually constructed without consideration of the structural context in which the substitution takes place. Here, we present amino acid substitution matrices specific for particular polar-nonpolar environment of the amino acid. As expected, these matrices [context-specific substitution matrices (CSSMs)] show striking differences from the popular BLOSUM62 matrix, which does not include structural information. When incorporated into BLAST and PSI-BLAST, CSSM outperformed BLOSUM matrices as assessed by ROC curve analyses of the number of true and false hits and by the accuracy of the sequence alignments to the hit sequences. These findings are also of relevance to profile-profile-based methods of homology detection, since CSSMs may help build a better profile. Profiles generated for protein sequences in PDB using CSSM-PSI-BLAST will be made available for searching via RPSBLAST through our web site http://lmbbi.nci.nih.gov/.  相似文献   

19.
Analysis of the results of the recent protein structure prediction experiment for our method shows that we achieved a high level of success, Of the 18 available prediction targets of known structure, the assessors have identified 11 chains which either entirely match a previously known fold, or which partially match a substantial region of a known fold. Of these 11 chains, we made predictions for 9, and correctly assigned the folds in 5 cases. We have also identified a further 2 chains which also partially match known folds, and both of these were correctly predicted. The success rate for our method under blind testing is therefore 7 out of 11 chains. A further 2 folds could have easily been recognized but failed due to either overzealous filtering of potential matches, or to simple human error on our part. One of the two targets for which we did not submit a prediction, prosubtilisin, would not have been recognized by our usual criteria, but even in this case, it is possible that a correct prediction could have been made by considerin a combination of pairwise energy and solvation energy Z-scores. Inspection of the threading alignments for the (αβ)8 barrels provides clues as to how fold recognition by threading works, in that these folds are recognized by parts rather than as a whole. The prospects for developing sequence threading technology further is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Designing a protein sequence that will fold into a predefined structure is of both practical and fundamental interest. Many successful, computational designs in the last decade resulted from improved understanding of hydrophobic and polar interactions between side chains of amino acid residues in stabilizing protein tertiary structures. However, the coupling between main‐chain backbone structure and local sequence has yet to be fully addressed. Here, we attempt to account for such coupling by using a sequence profile derived from the sequences of five residue fragments in a fragment library that are structurally matched to the five‐residue segments contained in a target structure. We further introduced a term to reduce low complexity regions of designed sequences. These two terms together with optimized reference states for amino‐acid residues were implemented in the RosettaDesign program. The new method, called RosettaDesign‐SR, makes a 12% increase (from 34 to 46%) in fraction of proteins whose designed sequences are more than 35% identical to wild‐type sequences. Meanwhile, it reduces 8% (from 22% to 14%) to the number of designed sequences that are not homologous to any known protein sequences according to psi‐blast. More importantly, the sequences designed by RosettaDesign‐SR have 2–3% more polar residues at the surface and core regions of proteins and these surface and core polar residues have about 4% higher sequence identity to wild‐type sequences than by RosettaDesign. Thus, the proteins designed by RosettaDesign‐SR should be less likely to aggregate and more likely to have unique structures due to more specific polar interactions. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号