首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiorthostatic position of rats during 93-days' tail suspension induced in the brain strongly pronounced edema of nervous tissue, alteration of structure in horoid plexus, pointing out the decrease in liquor secretion by exocytosis and increase in itraventricular pressure, morphological changes in veins and capillaries, reflecting the development of plethora in veins and tendency to thrombogenesis, and also the appearance of structural signs of prolonged arterial vasoconstriction and narrowing of arterial lumen in surface arteries which be considered as an adaptive process lying the obstacles to excessive blood inflow to brain and dumping the pulse wave during prolonged antiorthostatic state.  相似文献   

2.
We have studied the influence of thyroid hormone status in vivo on expression of the genes encoding guanine nucleotide-binding regulatory protein (G protein) alpha-subunits Gs alpha, Gi alpha(2), Gi alpha(3), and both the 36-kDa form (beta 1) and the 35-kDa form (beta 2) of the beta-subunit in rat ventricle. The relative amounts of immunoactive Gi alpha(2) and Gi alpha(3) were greater in ventricular membranes from hypothyroid animals than from euthyroid animals (1.9- and 2.6-fold, respectively). A corresponding 2.3-fold increase in Gi alpha(2) mRNA was observed as well as a 1.5-fold increase in Gi alpha(3) mRNA. The relative amounts of immunoactive beta 1 and beta 2 polypeptides were also increased (2.8- and 1.8-fold, respectively) in the hypothyroid state and corresponded with comparable increases in the relative levels of beta 1 and beta 2 mRNAs. No difference was seen between the amounts of Gi alpha(2), Gi alpha(3), beta 1, and beta 2 in the euthyroid state and the hyperthyroid state. In contrast to these effects of thyroid hormone status on Gi alpha and beta, the steady-state amounts of Gs alpha protein and mRNA were not altered by thyroid hormone status. Thyroid hormone status did not alter sensitivity of adenylyl cyclase to stimulation by sodium fluoride or guanyl-5'-yl imidodiphosphate (GppNHp), nor did it influence GppNHp-induced inhibition of forskolin-stimulated enzyme activity. These results demonstrate that thyroid hormone status in vivo can regulate expression of specific G protein subunits in rat myocardium. However, the physiological consequences of these changes remain unclear.  相似文献   

3.
For many G protein-coupled receptors, agonist-induced activation is followed by desensitization, internalization, and resensitization. In most cases, these processes are dependent upon interaction of agonist-occupied receptor with cytoplasmic beta-arrestins. The ligand-induced intramolecular rearrangements of the receptor responsible for the desensitized versus active conformational states, which dictate both the pharmacological properties of ligands and the biological activity of G protein-coupled receptors, have not been fully elucidated. Here, we identify specific interactions between parathyroid hormone (PTH)-related protein and the human PTH type 1 receptor (PTH1Rc) and the related receptor conformational changes that lead to beta-arrestin-2-mediated desensitization. PTH-related protein analogs modified at position 1 induced selective stabilization of the active G protein-coupled state of the receptor, resulting in lack of beta-arrestin-2 recruitment to the cell membrane, sustained cAMP signaling, and absence of ligand-receptor complex internalization. Mechanistically, the ligands modified at position 1, interacting with the extracellular end of helix VI of PTH1Rc, produced a translocation of transmembrane helices V and VI that differed from that induced by the cognate agonist, resulting in significantly different conformations of the third intracellular loop. These results show how specific interactions between PTH1Rc and its ligands may stabilize distinct conformational states, representing either the active G protein-coupled or a desensitized beta-arrestin-coupled receptor state. In addition, they establish that sustained biological activity of PTH1Rc may be induced by appropriately designed agonist ligands.  相似文献   

4.
Three monoclonal antibodies (mAb) directed against the regulatory domain of the protein kinase C gamma (PKC gamma); 15G4, 5A2 and 36G9, were shown to display distinct properties with respect to PKC gamma kinase activity [Cazaubon, S., Marais, R., Parker, P. & Strosberg, A.D. (1989) Eur. J. Biochem. 182, 401-406]. The mAb 5A2 and 36G9, which act as potent inhibitors of the cofactor-dependent kinase activity, can no longer bind PKC gamma in the presence of phosphatidylserine and phosphatidylserine/phorbol ester, respectively; 15G4 binding is not influenced by effectors. Due to this functional relationship between the inhibitory mAb- and cofactor-binding sites, we sought to localize the mAb epitopes with respect to the functional sites of PKC gamma. For this purpose, several deletions were introduced at the 5' end of the PKC gamma cDNA and the mutant proteins were expressed in Escherichia coli. The determination of the immunoreactivity of the deleted PKC gamma proteins shows that the amino acid residues essential to the binding of 5A2 and 36G9 are directly adjacent to the second cysteine-rich motif: these are contained in the sequences at positions 151-163 and 164-197, respectively. In addition, various deletions around the C1 region of the regulatory domain allowed the identification of the second cysteine-rich motif as a functional binding site for phorbol dibutyrate. These deletion studies thus demonstrate that the epitopes recognized by the inhibitory mAbs 5A2 and 36G9 are distinct from the cofactor-binding sites. This suggests that the binding of phosphatidylserine and phorbol ester induce conformational changes in the regulatory domain of PKC, which are thus responsible for the loss of the 5A2 and 36G9 immunoreactivity of the native protein. In this conformational state, PKC gamma conserves its ability to interact with the non-inhibitory mAb 15G4. By using synthetic peptides, the 15G4 epitope was localized to the sequence 297-310 in the V3 variable region. This indicates that the flexibility of the V3 region, which delimits the C-terminus of the regulatory domain, may not be necessary for the allosteric activation of PKC. In view of these results, we propose that PKC activation by its cofactors results in intramolecular changes which allow the enzyme to bind exogenous substrates.  相似文献   

5.
The MuIFN-alpha/beta and MuIFN-gamma induced antiviral states which are directed against mengovirus have been shown previously to be differentially regulated. Following interferon removal, the MuIFN-alpha/beta-induced antiviral state decays rapidly, while the MuIFN-gamma-induced antiviral state increases dramatically. To determine whether these observations with mengovirus represent part of a general phenomenon, these studies have been extended using vesicular stomatitis virus and vaccinia virus, which represent two distinctly different groups of viruses. The antiviral states induced by MuIFN-gamma against all three viruses increased dramatically following interferon removal. The antiviral state induced by MuIFN-alpha/beta against vesicular stomatitis virus was stable following interferon removal, while the antiviral states induced by MuIFN-alpha/beta against mengovirus and vaccinia virus decayed rapidly. Also, levels of 2'5' oligoadenylate synthetase were determined at various times following interferon removal. MuIFN-alpha/beta was found to be a relatively strong inducer of 2'5' oligoadenylate synthetase, while MuIFN-gamma was a relatively weak inducer. Further, while the changes in 2'5' oligoadenylate synthetase levels paralleled the changes in the levels of the antiviral states induced by MuIFN-alpha/beta and MuIFN-gamma against mengovirus and vaccinia virus, the changes in 2'5' oligoadenylate synthetase levels did not parallel the changes in the antiviral state induced by MuIFN-alpha/beta against vesicular stomatitis virus. The results suggested that the 2'5' oligoadenylate synthetase levels did not correlate with the level of antiviral state.  相似文献   

6.
The effects of the perturbation of the pituitary-thyroid axis induced during development on the functional activity of the growth hormone (GH) regulatory neuronal systems, GH-releasing hormone (GHRH), and somatostatin (SS) were studied in 14- and 21-day-old rats made hypothyroid by giving dams propylthiouracil in the drinking water since the day of parturition. Infant hypothyroid rats, both at 14 and 21 days of life, had elevated plasma thyroid-stimulating hormone levels and decreased pituitary and plasma GH levels. Simultaneous determination of hypothalamic GHRH/SS-like immunoreactivity (LI) and GHRH/SS mRNA levels did not reveal any difference in 14-day-old hypothyroid rats when compared with age-matched controls. In contrast, 21-day-old hypothyroid rats had decreased GHRH-LI content and a striking rise in GHRH mRNA levels, whereas SS-LI content and SS gene expression remained unaltered. These data indicate that in infant hypothyroid rats, changes in the functional activity of the GHRH neuronal system occur later than changes in GH secretion and are probably dependent on the GH deficiency. The functional activity of SS neurons was apparently unaltered in these hypothyroid rats, pointing to a lesser sensitivity of this system to the perturbation of the pituitary-thyroid axis.  相似文献   

7.
Di-(2-ethylhexyl) phthalate has been reported to interfere with the development and function of animal reproductive systems. However, hardly any studies provide methods to minimize or prevent the adverse effects of DEHP on reproduction. The energy balance state of mammals is closely related to reproductive activities, and the reproductive axis can regulate reproductive activities according to changes in the body's energy balance state. In this study, the effects of every other day fasting (EODF), as a way of intermittent fasting, on preventing the precocious puberty induced by DEHP in female rats was studied. EODF significantly improved the advancement of vaginal opening age (as the markers of puberty onset) and elevated serum levels of luteinizing hormone and estradiol (detected by ELISA) induced by 5 mg kg?1 DEHP exposure (D5). The mRNA and western blot results showed that the EODF could minimized the increase of gonadotropin-releasing hormone expression induced by DEHP exposure. The administration of DEHP could elevate the levels of kisspeptin protein and the number of kisspeptin-immunoreactive neurons in anteroventral periventricular nucleu, and this increase was diminished considerably by EODF treatment. In contrast, the D5 and D0 groups showed no remarkable difference in the level of Kiss1 expression in arcuate nucleus, whereas the D5 + EODF group had a remarkable decrease in kisspeptin expression as compared with the other two groups. Our results indicated that EODF might inhibit the acceleration of puberty onset induced by DEHP exposure via HPG axis.  相似文献   

8.
The purpose of this study was to investigate the effect of clomiphene citrate and human chorionic gonadotropin (HCG) on the structural changes, as well as the evaluation of the expression of cation channel sperm‐associated protein 1 (CatSper1), cation channel sperm‐associated protein 2 (CatSper2), luteinizing hormone/choriogonadotropin receptor (LHCGR), and steroidogenic factor 1 (SF1) genes in testicular tissue of rats. All rats divided into five groups as follows; G1 as the control group that received normal saline, G2 received olive oil, G3 received 100 IU/kg HCG, G4 received 5 mg/kg clomiphene citrate, and G5 received 5 mg/kg clomiphene citrate and 100 IU/kg HCG. At the end of the experiment period, Day 56, blood samples were taken and the serum was isolated. Then, histomorphometric analysis, hormonal assess, and real‐time polymerase chain reaction to measure the expression of CatSper1, CatSper2, LHCGR, and SF1 genes were performed. The results showed that the concentrations of testosterone, follicle‐stimulating hormone, and luteinizing hormone were decreased in the G4 group, whereas these parameters were increased in the G3 group. A comparison of the sperm quality indicated a significant reduction in the quality of sperm cells in the G4 group compared with other groups. The quality of sperm was significantly enhanced in the G3 and G5 groups in comparison with the G1 group. Also, our findings demonstrated that the expression of CatSper1, CatSper2, LHCGR, and SF1 genes were significantly elevated in the G3 group when compared with other experimental groups. According to the obtained results, it seems that clomiphene citrate reduces the process of spermatogenesis and the detrimental impacts of this compound would be neutralized by the administration of HCG.  相似文献   

9.
These findings characterize a 95-kDa glycoprotein on the surface of B lymphocytes recognized by the mAb G28-8. This protein (designated Bgp95), previously classified as a CD39 molecule, is unique based on functional, cell distribution, and immunochemical criteria. Biochemical analyses revealed that Bgp95 is a 95-kDa glycoprotein with N-linked carbohydrate and is reduced to about 70-kDa after treatment with endoglycopeptidase F. In functional studies, stimulation by G28-8 mAb or its F(ab')2 fragments induced a G0 to G1 cell cycle transition and was synergistic with PMA, anti-mu, or anti-CDw40 in stimulating proliferation of resting B cells. G28-8 mAb also could induce increases of cytoplasmic free calcium concentration [Ca2+]i in a subpopulation of tonsillar or peripheral blood B cells. The G28-8 mAb alone induced a steady increase in [Ca2+]i detectable even 1 h after stimulation. Cross-linking the G28-8 mAb with a second mAb specific for murine kappa light chains induced a more rapid increase of [Ca2+]i which peaked at 10 to 20 min and then declined. At 1 h after stimulation, [Ca2+]i was higher in B cells stimulated with G28-8 alone than in B cells stimulated with G28-8 plus anti-kappa. The same conditions of cross-linking with the anti-kappa which increased the kinetics of the [Ca2+]i response decreased the proliferative response which otherwise followed co-incubation of the mAb with B cell growth factor or PMA. Thus, conditions leading to rapid but transient [Ca2+]i increase via Bgp95 may not be as effective at stimulating B cell proliferation as conditions favoring a slower prolonged [Ca2+]i response. Although the Bgp95 molecule is present on activated buoyant tonsillar B cells, mAb to Bgp95 did not trigger [Ca2+]i increases in these cells. These results suggest that the Bgp95 protein may function in early B cell activation and that its signal mechanisms are altered by the activation state of the cell.  相似文献   

10.
Regulation of mitochondrial protein synthesis by thyroid hormone has been studied in isolated rat hepatocytes and liver mitochondria. Small doses (5 micrograms/100 g body wt) of triiodothyronine (T3) injected into hypothyroid rats increased both state 3 and 4 respiration by approximately 100%, while the ADP:O ratio remained constant. This suggests that T3 increases the numbers of functional respiratory chain units. T3 also induces mitochondrial protein synthesis by 50-100%. Analysis of the mitochondrial translation products show that all of the products were induced. No differential translation of the peptides involved in the respiratory chain was found. Regulation of the cytoplasmically made inner membrane peptides was also investigated in isolated hepatocytes. The majority of these peptides were not influenced by T3, in contrast to the finding with mitochondrial translation products. Those found to be regulated by T3 belong to two subsets, which were either induced or repressed by hormone. Thus, T3 stimulated a general increase in the synthesis of mitochondrially translated inner membrane peptides, but regulates selectively those inner membrane peptides translated on cytoplasmic ribosomes. The findings suggest that hormone regulation of the respiratory chain is exerted through a few selective proteins, perhaps those which require subunits made from both nuclear and mitochondrial genes.  相似文献   

11.
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of the pituitary gonadotropins. GnRH acts through a plasma membrane receptor that is a member of the G protein-coupled receptor (GPCR) family. These receptors interact with heterotrimeric G proteins to initiate downstream signaling. In this study, we have investigated which G proteins are involved in GnRH receptor-mediated signaling in L beta T2 pituitary gonadotrope cells. We have shown previously that GnRH activates ERK and induces the c-fos and LH beta genes in these cells. Signaling via the G(i) subfamily of G proteins was excluded, as neither ERK activation nor c-Fos and LH beta induction was impaired by treatment with pertussis toxin or a cell-permeable peptide that sequesters G beta gamma-subunits. GnRH signaling was partially mimicked by adenoviral expression of a constitutively active mutant of G alpha(q) (Q209L) and was blocked by a cell-permeable peptide that uncouples G alpha(q) from GPCRs. Furthermore, chronic activation of G alpha(q) signaling induced a state of GnRH resistance. A cell-permeable peptide that uncouples G alpha(s) from receptors was also able to inhibit ERK, c-Fos, and LH beta, indicating that both G(q/11) and G(s) proteins are involved in signaling. Consistent with this, GnRH caused GTP loading on G(s) and G(q/11) and increased intracellular cAMP. Artificial elevation of cAMP with forskolin activated ERK and caused a partial induction of c-Fos. Finally, treatment of G alpha(q) (Q209L)-infected cells with forskolin enhanced the induction of c-Fos showing that the two pathways are independent and additive. Taken together, these results indicate that the GnRH receptor activates both G(q) and G(s) signaling to regulate gene expression in L beta T2 cells.  相似文献   

12.
The neuropeptide galanin is widely expressed in the central nervous system and other tissues and induces different cellular reactions, e.g. hormone release from pituitary and inhibition of insulin release from pancreatic B cells. By microinjection of antisense oligonucleotides we studied the question as to which G proteins mediate the galanin-induced inhibition of voltage-gated Ca2+ channels in the rat pancreatic B-cell line RINm5F and in the rat pituitary cell line GH3. Injection of antisense oligonucleotides directed against alpha 01, beta 2, beta 3, gamma 2 and gamma 4 G protein subunits reduced the inhibition of Ca2+ channel current which was induced by galanin, whereas no change was seen after injection of cells with antisense oligonucleotides directed against alpha i, alpha q, alpha 11, alpha 14, alpha 15, beta 1, beta 4, gamma 1, gamma 3, gamma 5, or gamma 7 G protein subunits or with sense control oligonucleotides. In view of these data and of previous results, we conclude that the galanin receptors in GH3 and in RINm5F cells couple mainly to the G(0) protein consisting of alpha 01 beta 2 gamma 2 to inhibit Ca2+ channels and use alpha 01beta 3 gamma 4 less efficiently. The latter G protein composition was previously shown to be used by muscarinic M4 receptors to inhibit Ca2+ channels.  相似文献   

13.
14.
TNF-alpha alone or in combination with IFN-gamma differentially affects the proliferation and differentiation of the human leukemic cell line U937 and two derivatives C27 and G3. All three cell lines express similar numbers of functional, high affinity receptors for both TNF-alpha and IFN-gamma. In C27 and G3 cells, TNF-alpha as well as IFN-gamma induced changes in steady state levels of specific mRNA, which appear to be associated with TNF-alpha and IFN-gamma diverse effects on cell growth and differentiation. Constitutive differences in membrane phosphorylation patterns suggest that altered transduction of TNF-alpha signals may account for the differential response of these three cell lines. Several lines of evidence indicate that C27 and G3 cells, when compared with parental U937 cells represent discretely higher stages of monocytic differentiation, suggesting that cellular differentiation may contribute to the development of resistance to the action of TNF-alpha.  相似文献   

15.
Three monoclonal antibodies (1G3, 2H11, and 3G12) specific for a syngeneic Ek-specific T-cell clone, clone 4, have been established. The antibodies specifically blocked not only the activation of the clone in response to the specific antigen Ek but also the activation by IL-2. Kinetic studies of the blocking activity revealed that the antibodies blocked activation not only through steric hindrance of the antigen-binding site of the receptor but also via inhibition of DNA synthesis. The antibodies induced unresponsiveness of the clone to the specific antigen Ek, but not to nonspecific activation by IL-2. The state of unresponsiveness induced by 1G3 continued for 14 days, the longest time so far examined. The recovery from the unresponsiveness (tolerance) was not observed unless the clone cells proliferated vigorously in response to IL-2. The idiotope recognised by 1G3 was different from that by 2H11 and/or 3G12. This might explain some functional differences elicited by the antibodies.  相似文献   

16.
High concentrations of G proteins, which include multiple isoforms of each subunit, alpha, beta, and gamma, are expressed in the adult brain. In this study, we concentrated attention on changes of these isoforms during embryonic development in the rat brain. Concentrations of gamma2 as well as GoAalpha, GoBalpha, and beta2 were low in early embryogenesis and then increased, whereas expression of gamma5, in contrast, was initially high followed by a drop, with only very low levels observed throughout postnatal development. Among the other isoforms, Gi1alpha, G(s)alpha-short, G12alpha, G13alpha, beta4, gamma3, gamma7, and gamma12 were present in the embryonic brain at low levels, but their levels markedly increased after birth. In contrast, the levels of Gi2alpha, G(s)alpha-long, Gq/11alpha, and beta1 were essentially constant throughout. Immunohistochemical staining of the brain vesicles in the embryos showed gamma5 to be specifically expressed in the proliferative region of the ventricular zone, whereas gamma2 was mainly present in differentiated neuronal cells of the marginal zone. Furthermore, differentiation of P19 mouse embryonal carcinoma cells to neuronal cells with retinoic acid induced the expression of gamma2 and a decrease of gamma5, the major isoform in the undifferentiated state. These results suggest that neuronal differentiation is responsible for the on/off switch of the expression of gamma2 and gamma5 subunits.  相似文献   

17.
Proximal regions of the third intracellular loop (ICL-3) are responsible for the interaction with heterotrimeric G proteins in most of the serpentine type receptors. The peptides corresponding to these regions are able to activate G proteins in the absence of hormone and to alter the transduction of hormonal signal via the respective homologous receptor. However, the molecular mechanisms of action of the peptides, their specificity to receptors and target tissues are currently not well understood. The goal of this work was to study the receptor and tissue specificity of peptides-derivatives of C-terminal regions of the ICL-3 of luteinizing hormone receptor (LHR), type 1 relaxin receptor (RXFP1), somatostatin receptors of types 1 and 2 (Som1R and Som2R), and 5-hydroxytryptamine receptors of subtype 1B and type 6 (5-HT1BR and 5-HT6R) on the functional activity of adenylyl cyclase (AC) and GppNHp-binding of G proteins in the brain, myocardium, and testis of rats. It was shown that the influence of peptides on AC and G proteins is well detected in tissues enriched in homologous receptors. The effects stimulating AC and GppNHp-binding were most pronounced in the testes for LHR peptide, in the brain for peptide 5-HT6R, and in all of the tested tissues (but mainly in the myocardium) for the RXFP1 peptide. The AC-inhibiting effects of peptides Som1R, Som2R and 5-HT1BR, as well as the stimulation of GppNHp binding induced by these peptides, were most pronounced in the brain. In the presence of the peptides, the AC effects of hormones acting via homologous receptors were significantly attenuated, while the AC effects of other hormones changed insignificantly. The findings suggest that biological activity of the peptides depends on their interaction with complementary regions of homologous receptors, which should be taken into account when developing highly selective regulators of hormonal signaling systems on the basis of these peptides.  相似文献   

18.
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.  相似文献   

19.
As shown, there are direct and reverse functional connections between nervous and immune systems. Different shifts in psychoemotional reactivity induced by chronic stress or mental depression are accompanied with immunological disturbance, and on the contrary, disorders of immune state may be source of changes in mental functions. The pineal hormone melatonin, anxiolytic and antidepressant drugs simultaneously influences on the cerebral structures and immune system. These effects may be important part of specific psychopharmacological activity of the drugs.  相似文献   

20.
Immature stage VI Xenopus oocytes are arrested at the G(2)/M border of meiosis I until exposed to progesterone, which induces meiotic resumption through a non-genomic mechanism. One of the earliest events produced by this hormone is inhibition of the plasma membrane enzyme adenylyl cyclase (AC), with the concomitant drop in intracellular cAMP levels and reinitiation of the cell cycle. Recently Gsalpha and Gbetagamma have been shown to play an important role as positive regulators of Xenopus oocyte AC, maintaining the oocyte in the arrested state. However, a question that still remains unanswered, is how the activated state of Gsalpha and Gbetagamma is achieved in the immature oocyte, since no receptor or ligand have been found to be required. Here we provide evidence that xRic-8 can act in vitro and in vivo as a GEF for Gsalpha. Overexpression of xRic-8, through mRNA injection, greatly inhibits progesterone induced oocyte maturation and endogenous xRic-8 mRNA depletion, through siRNA microinjection, induces spontaneous oocyte maturation. These results suggest that xRic-8 is participating in the immature oocyte by keeping Gsalpha-Gbetagamma-AC signaling complex in an activated state and therefore maintaining G2 arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号