首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosomycin is the first strictly antifungal protein isolated from an insect (Drosophila melanogaster). The solution structure of this 44-residue protein has been reported previously. It involves a three-stranded beta-sheet and an alpha-helix, the protein global fold being maintained by four disulfide bridges. Rs-AFP2 is a plant antifungal protein exhibiting 41% sequence similarity with drosomycin. Mutational analysis of Rs-AFP2 showed the importance of some residues in the antifungal activity of the protein against the fungus target. In order to determine the structural features responsible for antifungal activity in both drosomycin and Rs-AFP2, we modeled the three-dimensional structure of Rs-AFP2, and of other antifungal proteins, using the solution structure of drosomycin as a template. Structure analysis of drosomycin and Rs-AFP2, and comparisons with the other modeled antifungal structures, revealed that the two proteins shared a hydrophobic cluster located at the protein surface in which a lysine residue is embedded. Based on these close structural similarities and the experimental data available for Rs-AFP2 mutants, an antifungal active site of the insect protein is proposed.  相似文献   

2.
Ribonuclease LE (RNase LE) from cultured tomato (Lycopersicon esculentum) cells is a member of the RNase T(2) family showing broad base specificity. The crystal structure of RNase LE has been determined at 1.65 A resolution. The structure consists of seven alpha-helices and seven beta-strands, belonging to an alpha+beta type structure. Comparison of the structure of RNase LE with that of RNase Rh, a microbial RNase belonging to the RNase T(2) family, reveals that while the overall folding topologies are similar to each other, major insertions and deletions are found at the N-terminal regions. The structural comparison, an amino acid sequence alignment of the RNase T(2) enzymes, and comparison of the disulfide-bonding pattern of these enzymes show that the structure of RNase LE shown here is the basic framework of the animal/plant subfamily of RNase T(2) enzymes (including a self-incompatibility protein called S-RNase), and the structure of RNase Rh is that of the fungal subfamily of RNase T(2) enzymes (including RNase T(2)). Subsequently, we superposed the active-site of the RNase LE with that of RNase Rh and found that (1) His39, Trp42, His92, Glu93, Lys96, and His97 of RNase LE coincided exactly with His46, Trp49, His104, Glu105, Lys108, and His109, respectively, of RNase Rh, and (2) two conserved water molecules were found at the putative P(1) sites of both enzymes. These facts suggest that plant RNase LE has a very similar hydrolysis mechanism to that of fungal RNase Rh, and almost all the RNase T(2) enzymes widely distributed in various species share a common catalytic mechanism. A cluster of hydrophobic residues was found on the active-site face of the RNase LE molecule and two large hydrophobic pockets exist. These hydrophobic pockets appear to be base binding sites mainly by hydrophobic interactions and are responsible for the base non-specificity of RNase LE.  相似文献   

3.
Cultured tobacco (Nicotiana tabacum var Wisconsin 38) cells adapted to grow under osmotic stress synthesize and accumulate a 26 kilodalton protein (osmotin) which can constitute as much as 12% of total cellular protein. In cells adapted to NaCl, osmotin occurs in two forms: an aqueous soluble form (osmotin-I) and a detergent soluble form (osmotin II) in the approximate ratio of 2:3. Osmotin-I has been purified to electrophoretic homogeneity, and osmotin-II has been purified to 90% electrophoretic homogeneity. The N-terminal amino acid sequences of osmotins I and II are identical through position 22. Osmotin-II appears to be much more resistant to proteolysis than osmotin-I. However, it cross-reacts with polyclonal antibodies raised in rabbits against osmotin-I. Osmotin strongly resembles the sweet protein thaumatin in its molecular weight, amino acid composition, N-terminal sequence, and the presence of a signal peptide on the precursor protein. Thaumatin does not cross-react with antiosmotin. An osmotin solution could not be detected as sweet at a concentration at least 100 times that of thaumatin which could be detected as sweet. Immunocytochemical detection of osmotin revealed that osmotin is concentrated in dense inclusion bodies within the vacuole. Although antiosmotin did not label organelles, cell walls, or membranes, osmotin appeared sparsely distributed in the cytoplasm.  相似文献   

4.
5.
Crystal structure of a nonsymbiotic plant hemoglobin   总被引:6,自引:0,他引:6  
BACKGROUND: Nonsymbiotic hemoglobins (nsHbs) form a new class of plant proteins that is distinct genetically and structurally from leghemoglobins. They are found ubiquitously in plants and are expressed in low concentrations in a variety of tissues including roots and leaves. Their function involves a biochemical response to growth under limited O(2) conditions. RESULTS: The first X-ray crystal structure of a member of this class of proteins, riceHb1, has been determined to 2.4 A resolution using a combination of phasing techniques. The active site of ferric riceHb1 differs significantly from those of traditional hemoglobins and myoglobins. The proximal and distal histidine sidechains coordinate directly to the heme iron, forming a hemichrome with spectral properties similar to those of cytochrome b(5). The crystal structure also shows that riceHb1 is a dimer with a novel interface formed by close contacts between the G helix and the region between the B and C helices of the partner subunit. CONCLUSIONS: The bis-histidyl heme coordination found in riceHb1 is unusual for a protein that binds O(2) reversibly. However, the distal His73 is rapidly displaced by ferrous ligands, and the overall O(2) affinity is ultra-high (K(D) approximately 1 nM). Our crystallographic model suggests that ligand binding occurs by an upward and outward movement of the E helix, concomitant dissociation of the distal histidine, possible repacking of the CD corner and folding of the D helix. Although the functional relevance of quaternary structure in nsHbs is unclear, the role of two conserved residues in stabilizing the dimer interface has been identified.  相似文献   

6.
Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12-20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function.  相似文献   

7.
Leucine rich repeat(LRR)domain,characterized by a repetitive sequence pattern rich in leucine residues,is a universal protein-protein interaction motif present in all life forms.LRR repeats interrupted by sequences of 30 70 residues(termed island domain,ID)have been found in some plant LRR receptor-like kinases(RLKs)and animal Toll-like receptors(TLR7-9).Recent studies provide insight into how a single ID is structurally integrated into an LRR protein.However,structural information on an LRR protein with two IDs is lacking.The receptor-like protein kinase 2(RPK2)is an LRR-RLK and has important roles in controlling plant growth and development by perception and transduction of hormone signal.Here we present the crystal structure of the extracellular LRR domain of RPK2(RPK2-LRR)containing two IDs from Arabidopsis.The structure reveals that both of the IDs are helical and located at the central region of the single RPK2-LRR solenoid.One of them binds to the inner surface of the solenoid,whereas the other one mainly interacts with the lateral side.Unexpectedly,a long loop immediately following the N-terminal capping domain of RPK2-LRR is presented toward and sandwiched between the two IDs,further stabilizing their embedding to the LRR solenoid.A potential ligand binding site formed by the two IDs and the solenoid is located at the C-terminal side of RPK2-LRR.The structural information of RPK2-LRR broadens our understanding toward the large family of LRR proteins and provides insight into RPK2-mediated signaling.  相似文献   

8.
In plants, specialized enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. In addition, K+-independent plant asparaginases are also active in splitting the aberrant isoaspartyl peptide bonds, which makes these proteins important for seed viability and germination. Here, we present the crystal structure of potassium-independent L-asparaginase from yellow lupine (LlA) and confirm the classification of this group of enzymes in the family of Ntn-hydrolases. The alpha- and beta-subunits that form the mature (alphabeta)2 enzyme arise from autoproteolytic cleavage of two copies of a precursor protein. In common with other Ntn-hydrolases, the (alphabeta) heterodimer has a sandwich-like fold with two beta-sheets flanked by two layers of alpha-helices (alphabetabetaalpha). The nucleophilic Thr193 residue, which is liberated in the autocatalytic event at the N terminus of subunit beta, is part of an active site that is similar to that observed in a homologous bacterial enzyme. An unusual sodium-binding loop of the bacterial protein, necessary for proper positioning of all components of the active site, shows strictly conserved conformation and metal coordination in the plant enzyme. A chloride anion complexed in the LlA structure marks the position of the alpha-carboxylate group of the L-aspartyl substrate/product moiety. Detailed analysis of the active site suggests why the plant enzyme hydrolyzes asparagine and its beta-peptides but is inactive towards substrates accepted by similar Ntn-hydrolases, such as taspase1, an enzyme implicated in some human leukemias. Structural comparisons of LlA and taspase1 provide interesting insights into the role of small inorganic ions in the latter enzyme.  相似文献   

9.
Identification of a novel DNA-binding protein to osmotin promoter   总被引:6,自引:0,他引:6  
Osmotinisa24kubasicproteinthatwasoriginallyidentifiedasthemostprominentpolypeptidepresentinsaltadaptedtobaccocells.Theexpressionofosmotinisinducedbymanystressesandenvironmentalfactorsincludingpathogeninfection,ethylene,ABA,Methyljasmonate,salicylicacid,w…  相似文献   

10.
Maltose-binding protein (MBP or MalE) of Escherichia coli is the periplasmic receptor of the maltose transport system. MalE31, a defective folding mutant of MalE carrying sequence changes Gly 32-->Asp and Ile 33-->Pro, is either degraded or forms inclusion bodies following its export to the periplasmic compartment. We have shown previously that overexpression of FkpA, a heat-shock periplasmic peptidyl-prolyl isomerase with chaperone activity, suppresses MalE31 misfolding. Here, we have exploited this property to characterize the maltose transport activity of MalE31 in whole cells. MalE31 displays defective transport behavior, even though it retains maltose-binding activity comparable with that of the wild-type protein. Because the mutated residues are in a region on the surface of MalE not identified previously as important for maltose transport, we have solved the crystal structure of MalE31 in the maltose-bound state in order to characterize the effects of these changes. The structure was determined by molecular replacement methods and refined to 1.85 A resolution. The conformation of MalE31 closely resembles that of wild-type MalE, with very small displacements of the mutated residues located in the loop connecting the first alpha-helix to the first beta-strand. The structural and functional characterization provides experimental evidence that MalE31 can attain a wild-type folded conformation, and suggest that the mutated sites are probably involved in the interactions with the membrane components of the maltose transport system.  相似文献   

11.
Crystal structure of plant pectin methylesterase   总被引:6,自引:0,他引:6  
Pectin is a principal component in the primary cell wall of plants. During cell development, pectin is modified by pectin methylesterases to give different properties to the cell wall. This report describes the first crystal structure of a plant pectin methylesterase. The beta-helical structure embodies a central cleft, lined by several aromatic residues, that has been deduced to be suitable for pectin binding. The active site is found at the center of this cleft where Asp157 is suggested to act as the nucleophile, Asp136 as an acid/base and Gln113/Gln135 to form an anion hole to stabilize the transition state.  相似文献   

12.
The crystal structure of tobacco PR-5d, an antifungal thaumatin-like protein isolated from cultured tobacco cells, was determined at the resolution of 1.8 A. The structure consists of 208 amino acid residues and 89 water molecules with a crystallographic R-factor of 0.169. The model has good stereochemistry, with respective root-mean-square deviations from the ideal values for bond and angle distances of 0.007 A and 1.542 degrees. Of the homologous PR-5 proteins, only those with antifungal activity had a common motif, a negatively charged surface cleft. This cleft is at the boundary between domains I and II, with a bottom part consisting of a three-stranded antiparallel beta-sheet in domain I. The acidic residues located in the hollow of the cleft form the beta-sheet region. Sequence and secondary structure analyses showed that the amino acid residues comprising the acidic cleft of PR-5d are conserved among other antifungal PR-5 proteins. This is the first report on the high-resolution crystal structure of an antifungal PR-5 protein. This structure provides insight into the function of pathogenesis-related proteins.  相似文献   

13.

Background

The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures.

Results

Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies.

Conclusion

Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.  相似文献   

14.
The testis/brain-RNA-binding protein (TB-RBP) spatially and temporally controls the expression of specific mRNAs in developing male germ cells and brain cells, and is implicated in DNA recombination and repair events. We report the 2.65 A crystal structure of mouse TB-RBP. The structure is predominantly alpha-helical and exhibits a novel protein fold and mode of assembly. Crystal symmetry and molecular symmetry combine to form an octet of TB-RBP monomers in the shape of an elongated spherical particle with a large cavity at its center. Amino acid residues that affect RNA and DNA binding are located on the interior surface of the assembled particle, and a putative nucleotide-binding domain that controls RNA binding is located at a dimer interface. Other modes of assembly are suggested for TB-RBP based on our structure and recently reported electron microscopic reconstructions of human TB-RBP.  相似文献   

15.
PURPOSE OF WORK: Tobacco osmotin is a functional homolog of mammalian adiponectin, and has antifungal activity. This work was undertaken to produce recombinant osmotin that has previously been unsuccessful because of its toxicity. Expression of recombinant tobacco osmotin (rOSM) in Escherichia coli inclusion bodies has been achieved. The optimal pH for rOSM expression in ZYM 505 medium is 7.0 at OD(650) of 1.5 of culture growth. The rOSM from the inclusion body was extracted with 8 M urea, and purified using CM-cellulose and cobalt-agarose bead affinity chromatography to a high purity. Approximately 80% of the rOSM remained bound to CM-cellulose and Cobalt-agarose beads after initial elution. The yield of purified rOSM was between 40 and 50 mg from 2 l of culture. Repeated elution of protein from CM-cellulose and Co-agarose increased the yield of rOSM to 200 mg from 2 l culture. The purified rOSM showed variable antifungal activities against two pathogenic yeast strains; Cryptococcus neoformans, Candida albicans, and non-pathogenic strains; Saccharomyces cerevisiae and Pichia methanolica.  相似文献   

16.
17.
Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 Å resolution were obtained using hanging drop method by vapor diffusion at 18 °C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function.  相似文献   

18.
EAFP2 is a novel antifungal protein isolated from the bark of the tree Eucommia ulmoides Oliver. It consists of 41 residues and is characterized with a five-disulfide motif and the inhibitory effects on the growth of both cell wall chitin-containing and chitin-free fungi. The crystal structure of EAFP2 at an atomic resolution of 0.84 A has been determined by using Shake-and-Bake direct methods with the program SnB. The phases obtained were of sufficient quality to permit the initial model built automatically and the structural refinement carried out using anisotropic displacement parameters resulted in a final crystallographic R factor of 6.8%. In the resulting structural model, all non-hydrogen protein atoms including an unusual pyroglutamyl acid residue at the N-terminal can fit to the articulated electron densities with one centre and more than 65% of the hydrogen atoms in the protein can be observed as individual peaks in the difference map. The general fold of EAFP2 is composed of a 3(10) helix (Cys3-Arg6), an alpha-helix (Ala27-Cys31) and a three-stranded antiparallel beta-sheet (Cys16-Ser18, Cys23-Ser25, and Cys35-Cys37) and cross-linked by five disulfide bridges. The tertiary structure of EAFP2 can be divided into two structural sectors, A and B. Sector A composed of residues 11-30 adopts a conformation similar to the chitin-binding domain in the hevein-like proteins and features a hydrophobic surface embraced a chitin-binding site (Tyr20, 22, 29, and Ser18). The distinct disulfide bridge Cys7-Cys37 connects the N-terminal ten residues with the C-terminal segment 35-41 to form the sector B, which features a cationic surface distributing all four positively charged residues, Arg6, 9, 36, and 40. Based on these structural features, the possible structural basis of the functional properties of EAFP2 is discussed.  相似文献   

19.
20.
Bacteriocin-producing lactic acid bacteria (LAB) possess a self-protection factor, which is generally called an immunity protein. In this study, we determine the crystal structure of an immunity protein, designated Mun-im, which was classified into subgroup B immunity proteins for class IIa bacteriocins. The Mun-im protein takes a left-turning antiparallel four-helix bundle structure with the flexible N- and C-terminal parts. Although the amino acid sequences of the subgroup B immunity proteins are distinguished from those of the subgroup A, the core structure of Mun-im is well-superimposed with that of the subgroup A immunity protein, EntA-im, and the C-terminus of both proteins is flexible. However, the C-terminus of Mun-im is obviously shorter than that of the subgroup A. We found through mutagenic study of Mun-im that the C-terminus and the K86 residue on the helix 4 in the immunity protein molecule are important for expression of the immunity activity on the subgroup B immunity proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号