首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the discovery of a new 4 domain α-amylase from Anoxybacillus contaminans which very efficiently hydrolyses raw starch granules. Compared to traditional starch liquefying α-amylases, this new 4 domain α-amylase contains a starch binding domain. The presence of this starch-binding domain enables the enzyme to efficiently hydrolyse starch at a temperature below the gelatinisation temperature. At a reaction temperature of 60°C and in combination with a glucoamylase from Aspergillusniger it was possible to liquefy 99% of the starch obtaining a DX value of 95%.

Furthermore, we describe how the current HFCS process can be turned into a low temperature simultaneous liquefaction and saccharification process by using this new 4 domain α-amylase in combination with a glucoamylase.  相似文献   

2.
    
We investigated whether Cas9‐mediated mutagenesis of starch‐branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium‐mediated transformation or by PEG‐mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no detectable Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that were broadly in line with expectations from genotype analysis. Strong reduction in both SBE isoforms created an extreme starch phenotype, as reported previously for low‐SBE potato tubers. HPLC‐SEC and 1H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in branching frequency relative to wild‐type starch. Mutants with strong reductions in SBE2 protein alone had near‐normal amylopectin chain‐length distributions and only small reductions in branching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 μm and granules with multiple hila. Thus, large reductions in both SBEs reduce amylopectin branching during granule growth, whereas reduction in SBE2 alone primarily affects numbers of starch granule initiations. Our results demonstrate that Cas9‐mediated mutagenesis of SBE genes has the potential to generate new, potentially valuable starch properties without integration of foreign DNA into the genome.  相似文献   

3.
4.
5.
The alkaline amylase requires high resistance towards chemical oxidation for use in the detergent and textile industries. This work aims to improve the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica by site‐directed mutagenesis based on the enzyme structure model. Five mutants were created by individually replacing methionine at positions 145, 214, 229, 247, and 317 in the amino acid sequence of alkaline amylase with oxidative‐resistant serine. The pH stability of the mutant enzymes was almost the same as that of the wild‐type (WT) enzyme (pH 7.0–11.0). The stable temperature range of the mutant enzymes M145S and M247S decreased from <50°C of the WT to <40°C, while the thermal stability of the other three mutant enzymes (M214S, M229S, and M317S) was almost the same as that of the WT enzyme. The catalytic efficiency (kcat/Km) of all the mutant enzymes decreased when compared to WT enzyme. The mutant enzymes showed increased activity in the presence of surfactants Tween‐60 and sodium dodecyl sulfate. When incubated with 500 mM H2O2 at 35°C for 5 h, the WT enzyme retained only 13.3% of its original activity, while the mutant enzymes M145S, M214S, M229S, M247S, and M317S retained 55.6, 70.2, 54.2, 62.5, and 46.4% of the original activities, respectively. The results indicated that the substitution of methionine residues at the catalytic domains with oxidative‐resistant serine can significantly improve the oxidative stability of alkaline amylase. This work provides an effective strategy to improve the oxidative stability of amylase, and the high oxidation resistance of the mutant enzymes shows their potential applications in the detergent and textile industries. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

6.
    
Bacteria that reside in the mammalian intestinal tract efficiently hydrolyze dietary carbohydrates, including starch, that escape digestion in the small intestine. Starch is an abundant dietary carbohydrate comprised of α1,4 and α1,6 linked glucose, yet mammalian intestinal glucoamylases cannot effectively hydrolyze starch that has frequent α1,6 branching as these structures hinder recognition and processing by α1,4‐specific amylases. Here we present the structure of the cell surface amylase SusG from Bacteroides thetaiotaomicron complexed with a mixed linkage amylosaccharide generated from transglycosylation during crystallization. Although SusG is specific for α1,4 glucosidic bonds, binding of this new oligosaccharide at the active site demonstrates that SusG can accommodate α1,6 branch points at subsite ?3 to ?2, and also at subsite+1 adjacent to the site of hydrolysis, explaining how this enzyme may be able to process a wide range of limit dextrins in the intestinal environment. These data suggest that B. thetaiotaomicron and related organisms may have a selective advantage for amylosaccharide scavenging in the gut.  相似文献   

7.
A simple purification procedure for raw starch-adsorbable and -digesting amylases (RSAs) was devised. The method depended on an affinity column, which was prepared by mixing raw corn starch and Hyflo Super-Cel. RSAs were specifically adsorbed on the matrix, and eluted with a buffer containing 1% β-cyclodextrin. This column could be used to purify RSAs from Streptomyces thermo-cyaneoviolaceus and a recombinant strain of E. coli.  相似文献   

8.
Yook C  Robyt JF 《Carbohydrate research》2002,337(12):1113-1117
Porcine pancreatic alpha amylase (PPA) and Bacillus amyloliquefaciens alpha amylase (BAA) were allowed to react with starch granules from maize, waxy maize, amylomaize-7, and potato in an aqueous suspension with a starch to water ratio of 1:10 and in a minimum of water with a starch to water ratio of 1:1. Quantitative amounts of the maltodextrin products were determined by TLC and scanning densitometry. The two alpha amylases gave different products that were characteristic of their unique action patterns. The percent conversion differed for the different kinds of starches and for the two kinds of reaction conditions. Maize and waxy maize starches were converted into about twice as much maltodextrins than were amylomaize-7 and potato starches by both enzymes and under both reaction conditions. The aqueous suspension gave much greater conversion into maltodextrins than did the minimum water condition. BAA gave 3-14% greater conversion of the granules into maltodextrins than did PPA, with the exception of potato starch.  相似文献   

9.
【背景】提高淀粉酶的稳定性进而适应多变的工业生产条件,是淀粉酶开发的重要方向。【目的】淀粉酶在食品加工、布料退浆、酿酒制造、养殖等领域都有广泛的应用,但目前生产用的淀粉酶来源单一,在溶液中的稳定性较差,需要扩大淀粉酶来源,增强酶的稳定性,使其进一步适应复杂多变的工业生产环境。【方法】利用选择培养基在三门峡黄河湿地表层土样中筛选得到20株具有淀粉酶活性的菌株,采用杯碟法检测粗酶液的活性并对其中活性最高的3株菌进行鉴定,对其中酶活性最高的菌株运用紫外照射的方式进行诱变并测定致死率,选择突变后酶活最高的菌株,优化培养条件,并测定突变后淀粉酶的活性和作用条件范围。利用3,5-二硝基水杨酸(3,5-dinitrosalicylic acid,DNS)法测定诱变前后酶活并进行活性对比。【结果】在三门峡黄河湿地表层土壤中筛选得到3株淀粉酶活性较高的菌株并编号S03、S08和S17。根据16S rRNA基因序列比对、革兰氏染色形态观察结合生理生化分析显示,菌株S03、S08和S17分别为Aeromonas、Exiguobacterium和Bacillus,其淀粉酶最适NaCl浓度是10%-12%,最适...  相似文献   

10.
Mammalian amylases harbor a flexible, glycine-rich loop 304GHGAGGA(310), which becomes ordered upon oligosaccharide binding and moves in toward the substrate. In order to probe the role of this loop in catalysis, a deletion mutant lacking residues 306-310 (Delta306) was generated. Kinetic studies showed that Delta306 exhibited: (1) a reduction (>200-fold) in the specific activity using starch as a substrate; (2) a reduction in k(cat) for maltopentaose and maltoheptaose as substrates; and (3) a twofold increase in K(m) (maltopentaose as substrate) compared to the wild-type (rHSAmy). More cleavage sites were observed for the mutant than for rHSAmy, suggesting that the mutant exhibits additional productive binding modes. Further insight into its role is obtained from the crystal structures of the two enzymes soaked with acarbose, a transition-state analog. Both enzymes modify acarbose upon binding through hydrolysis, condensation or transglycosylation reactions. Electron density corresponding to six and seven fully occupied subsites in the active site of rHSAmy and Delta306, respectively, were observed. Comparison of the crystal structures showed that: (1) the hydrophobic cover provided by the mobile loop for the subsites at the reducing end of the rHSAmy complex is notably absent in the mutant; (2) minimal changes in the protein-ligand interactions around subsites S1 and S1', where the cleavage would occur; (3) a well-positioned water molecule in the mutant provides a hydrogen bond interaction similar to that provided by the His305 in rHSAmy complex; (4) the active site-bound oligosaccharides exhibit minimal conformational differences between the two enzymes. Collectively, while the kinetic data suggest that the mobile loop may be involved in assisting the catalysis during the transition state, crystallographic data suggest that the loop may play a role in the release of the product(s) from the active site.  相似文献   

11.
    
The starch-synthase III (SSIII), with a total of 1025 residues, is one of the enzymes involved in plants starch synthesis. SSIII from Arabidopsis thaliana contains a putative N-terminal transit peptide followed by a 557-amino acid SSIII-specific domain (SSIII-SD) with three internal repeats and a C-terminal catalytic domain of 450 amino acids. Here, using computational characterization techniques, we show that each of the three internal repeats encodes a starch-binding domain (SBD). Although the SSIII from A. thaliana and its close homologous proteins show no detectable sequence similarity with characterized SBD sequences, the amino acid residues known to be involved in starch binding are well conserved.  相似文献   

12.
    
Cyclodextrin glycosyltransferase (CGTase) is an enzyme belonging to the alpha-amylase family that forms cyclodextrins (circularly linked oligosaccharides) from starch. X-ray work has indicated that this cyclization reaction of CGTase involves a 23-A movement of the nonreducing end of a linear malto-oligosaccharide from a remote binding position into the enzyme acceptor site. We have studied the dynamics of this sugar chain circularization through reaction path calculations. We used the new method of the stochastic path, which is based on path integral theory, to compute an approximate molecular dynamics trajectory of the large (75-kDa) CGTase from Bacillus circulans strain 251 on a millisecond time scale. The result was checked for consistency with site-directed mutagenesis data. The combined data show how aromatic residues and a hydrophobic cavity at the surface of CGTase actively catalyze the sugar chain movement. Therefore, by using approximate trajectories, reaction path calculations can give a unique insight into the dynamics of complex enzyme reactions.  相似文献   

13.
This paper describes the effect of gel buffer pH on the resolution of bovine serum amylase (Amylase I) isozymes in starch gel and the consequences for the understanding of the genetics of this locus. The two main findings are: (1) the existence of a satellite isozyme E to isozyme C which at pH 7.3 has the same mobility as the B isozyme but which at pH 8.0 migrates slower than B, and (2) the finding of three alleles AmI A, AmI B and AmI C in British cattle populations previously reported as having only AmI B and AmI C .  相似文献   

14.
Sardar M  Gupta MN 《Bioseparation》1998,7(3):159-165
Calcium-alginate beads were found to bind a variety of enzymes in a nonspecific fashion. However, alpha amylases from porcine pancreas, Bacillus subtilis (BAN 240L) and wheat germ bound at a significant level and B. subtilis and wheat germ amylases could be eluted with 1M maltose. The wheat germ alpha amylase could be purified 45 fold with 70% recovery. The SDS - PAGE pattern showed significant purification by this single step strategy.  相似文献   

15.
    
Lipomyces kononenkoae and Saccharomycopsis fibuligera possess highly efficient alpha-amylase and/or glucoamylase activities that enable both of these yeasts to utilize raw starch as a carbon source. Eight constructs containing the L. kononenkoae alpha-amylase genes (LKA1 and LKA2), and the S. fibuligera alpha-amylase (SFA1) and glucoamylase (SFG1) genes were prepared. The first set of constructs comprised four single gene cassettes each containing one of the individual amylase coding sequences (LKA1, LKA2, SFA1 or SFG1) under the control of the phosphoglycerate kinase gene (PGK1) promoter and terminator, while the second set comprised two single cassettes containing SFA1 and SFG1 linked to their respective native promoters and terminators. The third set of constructs consisted of two double-gene cassettes, one containing LKA1 plus LKA2 under the control of the PGK1 promoter and terminator, and the other SFA1 plus SFG1 controlled by their respective native promoters and terminators. These constructs were transformed into a laboratory strain Saccharomyces cerevisiae (Sigma1278b). Southern-blot analysis confirmed the stable integration of the different gene constructs into the S. cerevisiae genome and plate assays revealed amylolytic activity. The strain expressing LKA1 and LKA2 resulted in the highest levels of alpha-amylase activity in liquid media. This strain was also the most efficient at starch utilization in batch fermentations, utilizing 80% of the available starch and producing 0.61g/100 mL of ethanol after 6 days of fermentation. The strain expressing SFG1 under the control of the PGK1 expression cassette gave the highest levels of glucoamylase activity. It was shown that the co-expression of these heterologous alpha-amylase and glucoamylase genes enhance starch degradation additively in S. cerevisiae. This study has resulted in progress towards laying the foundation for the possible development of efficient starch-degrading S. cerevisiae strains that could eventually be used in consolidated bioprocessing, and in the brewing, whisky, and biofuel industries.  相似文献   

16.
    
A stochastic model was developed that was used to describe the formation and breakdown of all saccharides involved during alpha-amylolytic starch hydrolysis in time. This model is based on the subsite maps found in literature for Bacillus amyloliquefaciens alpha-amylase (BAA) and Bacillus licheniformis alpha-amylase (BLA). Carbohydrate substrates were modeled in a relatively simple two-dimensional matrix. The predicted weight fractions of carbohydrates ranging from glucose to heptasaccharides and the predicted dextrose equivalent showed the same trend and order of magnitude as the corresponding experimental values. However, the absolute values were not the same. In case a well-defined substrate such as maltohexaose was used, comparable differences between the experimental and simulated data were observed indicating that the substrate model for starch does not cause these deviations. After changing the subsite map of BLA and the ratio between the time required for a productive and a non-productive attack for BAA, a better agreement between the model data and the experimental data was observed. Although the model input should be improved for more accurate predictions, the model can already be used to gain knowledge about the concentrations of all carbohydrates during hydrolysis with an alpha-amylase. In addition, this model also seems to be applicable to other depolymerase-based systems.  相似文献   

17.
Several mutants of Xanthomonas campestris showing increased viscosity and/or gum production were detected after UV treatment. Xanthan solutions of the different mutants showed different intrinsic viscosity values, and no relationship was found between pyruvate or acetate contents and viscosifying ability of the xanthan. The best performance mutant (M-11) was obtained using halo size around colonies in starch-agar plates as the detection criterion, and proved the usefulness of this indirect screen for improved xanthan producers. A pleiotropic effect of this mutation on growth rate and total cell growth was observed. Received 07 December 1995/ Accepted in revised form 14 November 1996  相似文献   

18.
The extracellular amylases produced by Saccharomycopsis fibuliger have been studied with the intent of identifying the kinetic mechanism and product distribution, and modelling the production of d-glucose during starch hydrolysis. High performance liquid chromatography was effectively used to separate and quantify the product oligomers released. α-Amylase rapidly hydrolysed the long substrate chains into smaller oligomers which became the substrate for glucoamylase in the production of d-glucose. The formation of a rate limiting substrate occurred late in the reaction. Glucoamylase and α-amylase rates were fitted to Michaelis-Menten models with d-glucose inhibition included.  相似文献   

19.
  总被引:1,自引:6,他引:1  
The structure of human pancreatic alpha-amylase has been determined to 1.8 A resolution using X-ray diffraction techniques. This enzyme is found to be composed of three structural domains. The largest is Domain A (residues 1-99, 169-404), which forms a central eight-stranded parallel beta-barrel, to one end of which are located the active site residues Asp 197, Glu 233, and Asp 300. Also found in this vicinity is a bound chloride ion that forms ligand interactions to Arg 195, Asn 298, and Arg 337. Domain B is the smallest (residues 100-168) and serves to form a calcium binding site against the wall of the beta-barrel of Domain A. Protein groups making ligand interactions to this calcium include Asn 100, Arg 158, Asp 167, and His 201. Domain C (residues 405-496) is made up of anti-parallel beta-structure and is only loosely associated with Domains A and B. It is notable that the N-terminal glutamine residue of human pancreatic alpha-amylase undergoes a posttranslational modification to form a stable pyrrolidone derivative that may provide protection against other digestive enzymes. Structure-based comparisons of human pancreatic alpha-amylase with functionally related enzymes serve to emphasize three points. Firstly, despite this approach facilitating primary sequence alignments with respect to the numerous insertions and deletions present, overall there is only approximately 15% sequence homology between the mammalian and fungal alpha-amylases. Secondly, in contrast, these same studies indicate that significant structural homology is present and of the order of approximately 70%. Thirdly, the positioning of Domain C can vary considerably between alpha-amylases. In terms of the more closely related porcine enzyme, there are four regions of polypeptide chain (residues 237-250, 304-310, 346-354, and 458-461) with significantly different conformations from those in human pancreatic alpha-amylase. At least two of these could play a role in observed differential substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.  相似文献   

20.
    
Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha‐amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha‐amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha‐amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha‐amylase surface in domain B. This domain shows differences in various alpha‐amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号