首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circulation time (CT) is markedly prolonged when arterial pressure is extremely elevated by global brain ischemia which elicits also bradycardia, decrease in cardiac output and apnea in anesthetized rabbits. To study the cause of the prolongation of CT, we measured separately CT in the large veins, cardiopulmonary circulation system (CPS) and large arteries by a dye-densitometer before and during the brain ischemia, and also examined effects of apnea and bradycardia on CT in the large veins and CPS. CT during the brain ischemia was prolonged in each portion as compared to that before the brain ischemia. The prolongation was shortest in the large veins and longest in the CPS. During the brain ischemia with apnea, there was a significant linear relationship between heart rate and the inverses of CT in the large veins, but not in the CPS. When artificial ventilation was performed during brain ischemia-induced apnea, the linear relationship became significant also in the CPS. We conclude as follows; During global brain ischemia the prolongation of CT occurs primarily in the large arteries due to constriction of the small arteries and it progresses towards the CPS and large veins. The bradycardia prolongs CT in the large veins and CPS, and the apnea may produce hypoxic pulmonary vasoconstriction which may also contribute to the prolongation of CT in the CPS.  相似文献   

2.
The mechanism of selective brain cooling (SBC) allows the brain to remain cooler than the rest of the body. This paper aims to provide new ideas to better understand SBC, emphasizing how it works, how it is controlled and what its role is. There are two distinct types of SBC in homeotherms: (1) using precooling of arterial blood destined for the brain, with cool venous blood returning from the nose and head skin, (2) using venous blood to cool the brain directly. There is a common mechanism of control of SBC intensity. Reduced sympathetic activity leads to simultaneous dilation of the angular oculi veins, supplying the intracranial heat exchangers, and constriction of the facial veins, supplying the heart. Therefore, SBC is enhanced during heat exposure, endurance exercise, relaxed wakefulness and NREM sleep, and vanishes in the cold and during emotional distress. SBC is a multifunctional effector mechanism: it protects the brain from heat damage; it intensifies in dehydrated mammals, thereby saving water; it helps exercising animals delay exhaustion; it might thermally modulate alertness; it is used in diving animals to drop cerebral temperature much below its normal level, expanding diving capacity and protecting the brain from asphyxic damage. Altogether, SBC integrates both thermal and non-thermal regulatory functions.  相似文献   

3.
Changes in pial arteries diameter and the condition of blood flow "dead point" in arterial anastomoses were established using the brain window during an acute increase of mean arterial pressure (MAP) induced by intravenous injection of norepinephrine (NE) with microcineangiography and the analysis of films and frames on a montage table and TAS ("Leitz"). During an acute increase of MAP the movement of blood flow "dead point" in anastomoses and the expansion of plasma segments occurred much more frequently than in normotension. The stabilization of blood flow "dead point" was observed at high constant MAP. Pronounced dilation of both pial arteries and veins first occurred in anastomoses, then spread to arterial branches. It is assumed that high vulnerability of the brain vessels of the borderline zones is due to breakthrough in autoregulation of cerebral blood flow on its upper limit and depends on the repeatedly changing directions of the blood flow and its moving "dead point", as the peripheral resistance of arterial anastomoses-forming branches under these circumstances changes in an irregular manner.  相似文献   

4.
To demonstrate the 3D microvascular anatomy of the brain of the model organism Xenopus laevis Daudin scanning electron microscopy of vascular corrosion casts was correlated with light microscopy of stained 7 µm thick serial tissues sections. Results showed that supplying arteries descended from the leptomeningeal surface without remarkable branchings straight to the subventricular zone where they branched and capillarized. Capillaries showed few H‐ and/or Y‐shaped anastomoses during their centrifugal course toward the leptomeningeal surface where they drained into cerebral venules and veins. Apart from the accessory olfactory bulb and the vestibule‐cochlear nucleus where capillaries were densely packed, capillaries formed a wide‐meshed 3D network throughout the brain parenchyma and thus contrasted to urodelian brains where hairpin‐shaped capillaries descend from the leptomeningeal vessels into varying depths of the brain parenchyma. In about two‐third of specimens, a closed arterial circle of Willis was found at the base of the brain. If this circle in Xenopus might serve the same two functions as in men is briefly discussed. Choroid plexuses of third and fourth ventricle were found to have a high venous, but a low arterial inflow via one small choroidal artery only. Findings are compared with previous studies on the vascularization of the anuran brain and discrepancies in respect to presence or absence of particular arteries and/or veins in Ranids, Bufonids, and Pipids studied so far are discussed with particular emphasis on the techniques used in the various studies published so far.  相似文献   

5.
The possibility of reverse perfusion of the brain (in which arterial blood flows to brain tissues through venous vessels, and venous blood is drained by the arteries) was studied in acute and chronic experiments on dogs. Blood pressure in cerebral veins could reach 90--120 mm Hg, in Willisii arteries it was 5--35 mm Hg. Liquor pressure reached 20--35 mmHg. After temporary arterialization of the brain venous system (10, 30 and 60 min) the animals survived without impairment of the brain function and behaviour. In the future reverse perfusion of the brain (in which blood pressure in the arteries falls to the level of venous pressure) could be used as a means of urgent surgical intervention in cases of threatened or beginning intracranial arterial hemorrhage.  相似文献   

6.
Diminished constriction of arteries and veins following exposure to microgravity or bed rest is associated with a reduced ability to augment peripheral vascular resistance (PVR) and stroke volume during orthostasis. We tested the hypothesis that small mesenteric arteries and veins, which are not exposed to large pressure shifts during simulated microgravity via head-down tail suspension (HDT), will exhibit decrements in adrenergic constriction after HDT in rats. Small mesenteric arteries and veins from control (Con; n = 41) and HDT (n = 35) male Sprague-Dawley rats were studied in vitro. Vasoactive responsiveness to norepinephrine (NE) in arteries (10(-9) to 10(-4) M) and veins (pressure-diameter responses from 2 to 12 cmH(2)O after incubation in 10(-6) or 10(-4) M NE) were evaluated. Plasma concentrations of atrial (ANP) and NH(2)-terminal prohormone brain (NT-proBNP) natriuretic peptides were also measured. In mesenteric arteries, sensitivity and maximal responsiveness to NE were reduced with HDT. In mesenteric veins there was a diminished venoconstriction to NE at any given pressure in HDT. Plasma concentrations of both ANP and NT-proBNP were increased with HDT, and maximal arterial and venous constrictor responses to NE after incubation with 10(-7) M ANP or brain natriuretic peptide (BNP) were diminished. These data demonstrate that, in a vascular bed not subjected to large hydrodynamic differences with HDT, both small arteries and veins have a reduced responsiveness to adrenergic stimulation. Elevated levels of circulating ANP or NT-proBNP could adversely affect the ability of these vascular beds to constrict in vivo and conceivably could alter the intrinsic constrictor properties of these vessels with long-term exposure.  相似文献   

7.
The human tela choroidea of the lateral ventricle is vascularized by arteries arising from the two systems which form the arterial circle of the base, i.e. the internal carotid system and the vertebral basilar system. This blood supply is given by one anterior choroidal artery and by several posterior choroidal arteries. These arteries anastomose to form multiple indirect and remote links between the carotid and vertebral basilar systems. The capillary networks of the tela choroidea of the lateral ventricle consists of a velar network and of a choroidal network. This duality is constantly observed in the choroid formations of the human brain. The venous vascularization of the tela is tributary of the venous circle of the base of the brain through choroidal veins that drain either into the internal cerebral veins or into the basal veins.  相似文献   

8.
The experiments in adult rabbits revealed that in the blood flowing in cerebral veins the red cell concentration and hematocrit are much greater than in the veins of hind legs of the same animals. In blood samples taken from the heart these values are higher than in those taken from the hind leg, but usually lower than in blood samples taken from the brain. Under conditions of reduced cerebral blood flow (ischemia) the red cell concentration and hematocrit in the brain vessels decrease significantly as compared to the control conditions. Thus, the red cell distribution in arterial branching sequence is irregular, depending both on the localization of the vascular bed and the blood flow rate in it.  相似文献   

9.
The effect of different degrees of arterial hypoxia on cerebrocortical NAD/NADH redox state, reflectance, oxygen tension, extracellular potassium ion concentration, ECoG and arterial blood pressure was investigated in rats. The results may be summarized as follows. a) The decrease of cortical pO2 preceded the dilatation of cortical vessels by 15-20 sec but the changes in cortical extracellular potassium ion concentration, ECoG and arterial blood pressure started later than the vasodilatation. These results give further support to the regulatory role of cortical pO2 decrease in the initiation of cerebrocortical vasodilatation during arterial hypoxia. b) Since the K+ concentration of the brain cortex and the ECoG did not change in mild arterial hypoxia, the significant NAD reduction obtained in this experimental group is likely to be of cytoplasmic origin. The same conclusion applies to the initial periods of severe arterial hypoxia. On the basis of the extent of NAD reduction during various degrees of arterial hypoxia it is concluded that about 30% of the NAD reduction occurring in anoxia is of cytoplasmic origin. c) When the animals were ventilated with a gas mixture containing 4-7% oxygen, the brain cortex became nearly anoxic, partly because of the gradual decrease of arterial blood pressure. Finally, the mechanism of potassium leakage is identical under prolonged severe arterial hypoxaemia and on anoxic terminal depolarization.  相似文献   

10.
Abstract— The effect of acute (8-min) and prolonged (13-h) exposures to high doses of ethanol upon the intermediary metabolites of rat brain has been studied, with the use of a new freezing technique which minimizes post-mortem changes. Injection of ethanol (80 mmol/kg body wt) produced general anaesthesia within 8 min after administration. At this time there were increases in the brain contents of glucose, glucose-6-phosphate and citrate; there was no change in arterial pCO2. Rats under ethanol anaesthesia for 13 h showed increases in brain contents of glycogen, glucose and glucose 6-phosphate; and decreases in lactate, pyruvate, α-oxoglutarate and malate. Under similar experimental conditions, arterial pCO2, increased from 37 to 51 Torr. The changes in levels of metabolites after injection of ethanol were similar to those after administration of many volatile anaesthetic agents or elevation of brain CO2 by other means. Although brain levels of malate and α-oxoglutarate decreased after prolonged exposure to ethanol, the mitochondrial redox state was maintained. Accordingly, the levels of glutamate and aspartate fell in accordance with the law of mass action. The maintenance of the cytoplasmic and mitochondrial redox states in the brain during ethanol intoxication was in marked contrast to the effects on the liver. We suggest that the different effects observed in brain and liver result from the action of ethanol upon the nerve cell membrane in brain, whereas the primary target in liver is alcohol dehydrogenase.  相似文献   

11.
The MR-venography of the veins and brain venous sinuses, brachiocephalic veins an internal jugular veins duplex scanning have been performed in order to study the distinctions of cerebral venous hemodynamics of healthy people and the patients with venous encephalopathy caused by the extravasal compression of the brachiocephalic veins at the neck level and the superior sections of mediastinum. It has been revealed that the blood flow reducing in transverse brain sinuses occurs not only in the case of outflow disorder in the distal sections of the venous system, but also in norm. This reducing depends on anatomic constitution of confluens sinuum and the venous angle type of brachiocephalic veins. The three venous angle types of brachiocephalic veins have been distinguished: y-type, mu-type and Y-type. It has been registered that in case of the mu-type angle the blood flow can be reduced in norm due to peripheral resistance increase at the physiological bends of nearly a right angle type. The distinctions of hemodynamics in case of venous obstruction in contrast to arterial obstruction have been described. It has been registered that in case of outflow trouble in one of the internal jugular veins the speed and the volume of the blood flow in it are progressively reduced depending on the duration and the manifestation of compression. All this results in narrowing of the vein diameter from the affected side, and in compensatory distention of the diameter and increase of blood flow volume in the contralateral internal jugular vein, vertebral and external jugular veins, in succession.  相似文献   

12.
Saphenous veins used as arterial grafts are exposed to arterial levels of oxygen partial pressure (pO2), which are much greater than what they experience in their native environment. The object of this study is to determine the impact of exposing human saphenous veins to arterial pO2. Saphenous veins and left internal mammary arteries from consenting patients undergoing coronary artery bypass grafting were cultured ex vivo for 2 weeks in the presence of arterial or venous pO2 using an established organ culture model. Saphenous veins cultured with arterial pO2 developed intimal hyperplasia as evidenced by 2.8-fold greater intimal area and 5.8-fold increase in cell proliferation compared to those freshly isolated. Saphenous veins cultured at venous pO2 or internal mammary arteries cultured at arterial pO2 did not develop intimal hyperplasia. Intimal hyperplasia was accompanied by two markers of elevated reactive oxygen species (ROS): increased dihydroethidium associated fluorescence (4-fold, p<0.05) and increased levels of the lipid peroxidation product, 4-hydroxynonenal (10-fold, p<0.05). A functional role of the increased ROS saphenous veins exposed to arterial pO2 is suggested by the observation that chronic exposure to tiron, a ROS scavenger, during the two-week culture period, blocked intimal hyperplasia. Electron paramagnetic resonance based oximetry revealed that the pO2 in the wall of the vessel tracked that of the atmosphere with a ~30 mmHg offset, thus the cells in the vessel wall were directly exposed to variations in pO2. Monolayer cultures of smooth muscle cells isolated from saphenous veins exhibited increased proliferation when exposed to arterial pO2 relative to those cultured at venous pO2. This increased proliferation was blocked by tiron. Taken together, these data suggest that exposure of human SV to arterial pO2 stimulates IH via a ROS-dependent pathway.  相似文献   

13.
To investigate the influence of vasomotor tone and vessel compliance on pulmonary segmental vascular resistance, we determined the longitudinal distribution of vascular pressures in 15 isolated blood perfused lungs of newborn lambs. We measured pulmonary arterial and left atrial pressures and by micropuncture the pressures in 20- to 80-micron-diam subpleural arterioles and venules, both before and after paralyzing the vasculature with papaverine hydrochloride. In five lungs we also determined the microvascular pressure profile during reverse perfusion. In lungs with baseline vasomotor tone, approximately 32% of the total pressure drop was in arteries, approximately 32% in microvessels, and approximately 36% in veins. With elimination of vasomotor tone, arterial and venous resistances decreased to one-fifth and one-half of base-line values, respectively, indicating that vasomotor tone contributed mainly toward arterial resistance. During reverse perfusion, the pressure drop in veins was similar to that in arteries during forward perfusion, suggesting that the compliance of arteries and veins is comparable. We conclude that vascular tone and compliance are important factors that determine the distribution of segmental vascular resistance in lungs of the newborn.  相似文献   

14.
The rigidity of the skull and the inertial characteristics and incompressibility of its contents cause the elastic cerebral arteries and veins to act over brief periods of time like rigid tubes of relatively small diameter. Poiseuille's law is applicable to their behavior. The use of this law, in combination with the fact that, during brief intervals, the total volume of the cerebral arteries and veins remains constant, permits derivation of a mathematical expression for the average arterial flow in terms of an average arterial radius. The differentiated equation has five positive roots which represent maxima and minima of the average flow in terms of the average arterial radius. The theoretical results have physiological implications and potential clinical usefulness, which are discussed.  相似文献   

15.
16.
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.  相似文献   

17.
18.
 A vascular heat transfer model is developed to simulate temperature decay along the carotid arteries in humans, and thus, to evaluate temperature differences between the body core and arterial blood supplied to the brain. Included are several factors, including the local blood perfusion rate, blood vessel bifurcation in the neck, and blood vessel pairs on both sides of the neck. The potential for cooling blood in the carotid artery by countercurrent heat exchange with the jugular veins and by radial heat conduction to the neck surface was estimated. Cooling along the common and internal carotid arteries was calculated to be up to 0.87 °C during hyperthermia by high environmental temperatures or muscular exercise. This model was also used to evaluate the feasibility of lowering the brain temperature effectively by placing ice pads on the neck and head surface or by wearing cooling garments during hypothermia treatment for brain injury or other medical conditions. It was found that a 1.1 °C temperature drop along the carotid arteries is possible when the neck surface is cooled to 0 °C. Thus, the body core temperature may not be a good indication of the brain temperature during hyperthermia or hypothermia. Received: 10 January 2002 / Accepted: 7 May 2002 This research was supported by a UMBC Summer Faculty Fellowship.  相似文献   

19.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

20.
Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号