首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Philadelphia chromosome-positive human leukemias, which include chronic myelogenous leukemia and some acute lymphocytic leukemias, the c-abl proto-oncogene on chromosome 9 becomes fused to the bcr gene on chromosome 22, and Bcr-Abl fusion proteins are produced. The Bcr sequences activate the Abl tyrosine kinase which is required for the transforming function of Bcr-Abl. The Bcr sequences also enhance an F-actin-binding activity associated with c-Abl. Here, we show that binding of c-Abl and Bcr-Abl proteins to actin filaments in vivo and in vitro is mediated by an evolutionarily conserved domain at the C-terminal end of c-Abl. The c-Abl F-actin-binding domain contains a consensus motif found in several other actin-crosslinking proteins. Mutations in the consensus motif are shown to abolish binding to F-actin. Bcr-Abl proteins unable to associate with F-actin have a reduced ability to transform Rat-1 fibroblasts and to abrogate the requirement for interleukin-3 in the lymphoblastoid cell line Ba/F3. In transformed cells, Bcr-Abl induces a redistribution of F-actin into punctate, juxtanuclear aggregates. The binding to actin filaments has important implications for the pathogenic and physiological functions of the Bcr-Abl and c-Abl proteins.  相似文献   

2.
Clinical studies in chronic myelogenous leukemia demonstrate that the overexpression of Bcr-Abl tyrosine kinase is usually accompanied by relatively low telomerase activity in the chronic phase, which reverts to a high activity in blast crisis. The present study was designed to investigate the cross-talk between both enzymes, using Bcr-Abl-positive K-562 and Bcr-Abl-negative Jurkat cell lines, treated with antisense oligodeoxyribonucleotides (ODNs) against Bcr-Abl/c-Abl mRNA. The decreased amount and enzyme activity of Bcr-Abl/c-Abl provoked telomerase activation in both cell lines. After short-term treatment with anti-Bcr-Abl/c-Abl ODNs (6 days), no variations in hTERT and phospho-hTERT were detected. The decreased amount of Bcr-Abl/c-Abl was accompanied by: alterations in telomeric associated proteins-overexpression of tankyrase and decreased amount of TRF1/Tin2, cell growth arrest of K-562 cells, reaching a plateau after 6 days treatment, and increased proliferating activity of Jurkat cells. No changes in telomere length were detected after short-term treatment. In contrast, after long-term treatment with anti-Bcr-Abl/c-Abl ODNs (36 days), a significant elongation of telomeres and enhancement of hTERT were established, accompanied by an increased proliferating activity of both cell lines. These data provide evidence that the inhibition of Bcr-Abl or c-Abl synthesis keeps a potential to restore or induce cell proliferation through telomere lengthening control and telomerase activation.  相似文献   

3.
Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl   总被引:5,自引:0,他引:5  
The Bcr-Abl tyrosine kinase causes different forms of leukemia in humans. Depending on its position within the cell, Bcr-Abl differentially affects cellular growth. However, no structural and molecular details for the anticipated localization determinants are available. We present the NMR structure of the F-actin binding domain (FABD) of Bcr-Abl and its cellular counterpart c-Abl. The FABD forms a compact left-handed four-helix bundle in solution. We show that the nuclear export signal (NES) previously reported in this region is part of the hydrophobic core and nonfunctional in the intact protein. In contrast, we could identify the critical residues of helix alphaIII that are responsible for F-actin binding and cytoskeletal association. We propose that these interactions represent a major determinant for both Bcr-Abl and c-Abl localization.  相似文献   

4.
Urea derivatives of STI571 as inhibitors of Bcr-Abl and PDGFR kinases   总被引:2,自引:0,他引:2  
The constitutively active Abl kinase activity of the Bcr-Abl oncoprotein is causative for chronic myelogenous leukemia. Urea derivatives, structurally related to the therapeutic agent STI571, have been identified, which potently inhibit the tyrosine kinase activity of recombinant Abl. In particular a dimethylamino-aniline derivative (18) inhibited c-Abl transphosphorylation with an IC(50) value of 56 nM. Although this activity was not translated into cellular activity against the constitutively activated oncogenic Bcr-Abl, a number of compounds from this series potently inhibited cellular PDGFR autophosphorylation. It was also possible to differentiate between c-Abl and PDGFR kinase inhibition, with compound 22 being selective towards Abl and 23 selective for PDGFR.  相似文献   

5.
Bcr-Abl is a dysregulated tyrosine kinase whose mechanism of activation is unclear. Here, we demonstrate that, like c-Abl, Bcr-Abl is negatively regulated through its SH3 domain. Kinase activity, transformation, and leukemogenesis by Bcr-Abl are greatly impaired by mutations of the Bcr coiled-coil domain that disrupt oligomerization, but restored by an SH3 point mutation that blocks ligand binding or a complementary mutation at the intramolecular SH3 binding site defined in c-Abl. Phosphorylation of tyrosines in the activation loop of the catalytic domain and the linker between the SH2 and catalytic domains (SH2-CD linker) is dependent on oligomerization and required for leukemogenesis. These results suggest that Bcr-Abl has a monomeric, unphosphorylated state with the SH3 domain engaged intramolecularly to Pro1124 in the SH2-CD linker, the form that is sensitive to the inhibitor imatinib (STI-571). The sole function of the coiled-coil domain is to disrupt the autoinhibited conformation through oligomerization and intermolecular autophosphorylation.  相似文献   

6.
Multidomain kinases such as c-Src and c-Abl are regulated by complex allosteric interactions involving their noncatalytic SH3 and SH2 domains. Here we show that enhancing natural allosteric control of kinase activity by SH3/linker engagement has long-range suppressive effects on the kinase activity of the c-Abl core. Surprisingly, enhanced SH3/linker interaction also dramatically sensitized the Bcr-Abl tyrosine kinase associated with chronic myelogenous leukemia to small molecule inhibitors that target either the active site or the myristic acid binding pocket in the kinase domain C-lobe. Dynamics analyses using hydrogen exchange mass spectrometry revealed a remarkable allosteric network linking the SH3 domain, the myristic acid binding pocket, and the active site of the c-Abl core, providing a structural basis for the biological observations. These results suggest a rational strategy for enhanced drug targeting of Bcr-Abl and other multidomain kinase systems that use multiple small molecules to exploit natural mechanisms of kinase control.  相似文献   

7.
A myristoyl/phosphotyrosine switch regulates c-Abl   总被引:16,自引:0,他引:16  
The c-Abl tyrosine kinase is inhibited by mechanisms that are poorly understood. Disruption of these mechanisms in the Bcr-Abl oncoprotein leads to several forms of human leukemia. We found that like Src kinases, c-Abl 1b is activated by phosphotyrosine ligands. Ligand-activated c-Abl is particularly sensitive to the anti-cancer drug STI-571/Gleevec/imatinib (STI-571). The SH2 domain-phosphorylated tail interaction in Src kinases is functionally replaced in c-Abl by an intramolecular engagement of the N-terminal myristoyl modification with the kinase domain. Functional studies coupled with structural analysis define a myristoyl/phosphotyrosine switch in c-Abl that regulates docking and accessibility of the SH2 domain. This mechanism offers an explanation for the observed cellular activation of c-Abl by tyrosine-phosphorylated proteins, the intracellular mobility of c-Abl, and it provides new insights into the mechanism of action of STI-571.  相似文献   

8.
The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that DeltaSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.  相似文献   

9.
There is a current and increasing demand for simple, robust, nonradioactive assays of protein tyrosine kinase activity with applications for clinical diagnosis and high-throughput screening of potential molecularly targeted therapeutic agents. One significant challenge is to detect and measure the activity of specific kinases with key roles in cell signaling as an approach to distinguish normal cells from cancer cells and as a means of evaluating targeted drug efficacy and resistance in cancer cells. Here, we describe a method in which kinase substrates fused to glutathione-S-transferase and immobilized on glutathione agarose beads are phosphorylated, eluted, and then assayed to detect kinase activity. The activity of recombinant, purified c-Abl kinase or Bcr-Abl kinase in whole cell extracts can be detected with equivalent specificity, sensitivity, and reproducibility. Similarly, inhibition of recombinant c-Abl or Bcr-Abl in cells or cell extracts by imatinib mesylate and other Bcr-Abl targeted kinase inhibitors is readily assayed. This simple kinase assay is sufficiently straightforward and robust for use in clinical laboratories and is potentially adaptable to high-throughput assay formats.  相似文献   

10.
Regulated phosphorylation by protein tyrosine kinases (PTKs), such as c-Abl, is critical to cellular homeostasis. In turn, once deregulated as in the chronic myeloid leukemia (CML) fusion protein Bcr-Abl, PTKs can promote cancer onset and progression. The dramatic success of the Bcr-Abl inhibitor imatinib as therapy for CML has inspired interest in other PTKs as targets for cancer drug discovery. Here we report a novel PTK activity and inhibition screening method using hydrogel-immobilized peptide substrates. Using acrylate crosslinkers, we tether peptides via terminal cysteines to thiol-presenting hydrogels in 96-well plates. These surfaces display low background and high reproducibility, allowing semiquantitative detection of peptide phosphorylation by recombinant c-Abl or by Bcr-Abl activity in cell extracts using traditional anti-phosphotyrosine immunodetection and chemifluorescence. The capabilities of this assay are demonstrated by performing model screens for inhibition with several commercially available PTK inhibitors and a collection of pyridopyrimidine Src/Abl dual inhibitors. This assay provides a practical method to measure the activity of a single kinase present in a whole cell lysate with high sensitivity and specificity as a valuable means for efficient small molecule screening.  相似文献   

11.
12.
The chimeric oncoprotein BCR-Abl exhibits deregulated protein tyrosine kinase activity and is responsible for the pathogenesis of certain human leukemias, such as chronic myelogenous leukemia. The activities of cellular Abl (c-Abl) and BCR-Abl are stringently regulated and the cellular mechanisms involved in their inactivation are poorly understood. Protein tyrosine phosphatases can negatively regulate Abl mediated signaling by dephosphorylating the kinase and/or its substrates. This study investigated the ability of the intracellular T cell protein tyrosine phosphatase (TCPTP/PTPN2) to dephosphorylate and regulate the functions of BCR-Abl and c-Abl. TCPTP is expressed as two alternately spliced isoforms — TC48 and TC45, which differ in their C-termini and localize to the cytoplasm and nucleus respectively. We show that TC48 dephosphorylates BCR-Abl but not c-Abl and inhibits its activity towards its substrate, CrkII. Y1127 and Y1294 residues whose phosphorylation corresponds with BCR-Abl activation status were the primary sites targeted by TC48. Co-localization and immunoprecipitation experiments showed that TC48 interacted with BCR-Abl but not with c-Abl, and BCR domain was sufficient for interaction. TC48 expression resulted in the stabilization of Bcr-Abl protein dependent on its phosphatase activity. Inactivation of cellular TC48 in K562 cells by stable expression of a dominant negative catalytically inactive mutant TC48, enhanced proliferation. TC48 expressing K562 clones showed reduced proliferation and enhanced sensitivity to STI571 compared to control clones suggesting that TC48 can repress the growth of CML cells. This study identifies a novel cellular regulator that specifically inhibits the activity of oncogenic BCR-Abl but not that of the cellular Abl kinase.  相似文献   

13.
Bcr-Abl is the oncogenic protein-tyrosine kinase responsible for chronic myelogenous leukemia. Recently, we observed that inhibition of myeloid Src family kinase activity (e.g. Hck, Lyn, and Fyn) induces growth arrest and apoptosis in Bcr-Abl-transformed cells, suggesting that cell transformation by Bcr-Abl involves Src family kinases (Wilson, M. B., Schreiner, S. J., Choi, H. J., Kamens, J., and Smithgall, T. E. (2002) Oncogene 21, 8075-8088). Here, we report the unexpected observation that Hck, Lyn, and Fyn strongly phosphorylate the SH3-SH2 region of Bcr-Abl. Seven phosphorylation sites were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Tyr89 and Tyr134 in the Abl-derived SH3 domain; Tyr147 in the SH3-SH2 connector; and Tyr158, Tyr191, Tyr204, and Tyr234 in the SH2 domain. SH3 domain Tyr89, the most prominent phosphorylation site in vitro, was strongly phosphorylated in chronic myelogenous leukemia cells in a Src family kinase-dependent manner. Substitution of the SH3-SH2 tyrosine phosphorylation sites with phenylalanine substantially reduced Bcr-Abl-mediated transformation of TF-1 myeloid cells to cytokine independence. The positions of these tyrosines in the crystal structure of the c-Abl core and the transformation defect of the corresponding Bcr-Abl mutants together suggest that phosphorylation of the SH3-SH2 region by Src family kinases impacts Bcr-Abl protein conformation and signaling.  相似文献   

14.
The nonreceptor tyrosine kinase encoded by the c-Abl gene has the unique feature of an F-actin binding domain (FABD). Purified c-Abl tyrosine kinase is inhibited by F-actin, and this inhibition can be relieved through mutation of its FABD. The c-Abl kinase is activated by physiological signals that also regulate the actin cytoskeleton. We show here that c-Abl stimulated the formation of actin microspikes in fibroblasts spreading on fibronectin. This function of c-Abl is dependent on kinase activity and is not shared by c-Src tyrosine kinase. The Abl-dependent F-actin microspikes occurred under conditions where the Rho-family GTPases were inhibited. The FABD-mutated c-Abl, which is active in detached fibroblasts, stimulated F-actin microspikes independent of cell attachment. Moreover, FABD-mutated c-Abl stimulated the formation of F-actin branches in neurites of rat embryonic cortical neurons. The reciprocal regulation between F-actin and the c-Abl tyrosine kinase may provide a self-limiting mechanism in the control of actin cytoskeleton dynamics.  相似文献   

15.
16.
The catalytic activity of c-Abl tyrosine kinase is reduced in fibroblasts that are detached from the extracellular matrix. We report here that a deletion of the extreme C terminus of c-Abl (DeltaF-actin c-Abl) can partially restore kinase activity to c-Abl from detached cells. Because the extreme C terminus of c-Abl contains a consensus F-actin binding motif, we investigated the effect of F-actin on c-Abl tyrosine kinase activity. We found that F-actin can inhibit the kinase activity of purified c-Abl protein. Mutations of the extreme C-terminal region of c-Abl disrupted both the binding of c-Abl to F-actin and the inhibition of c-Abl by F-actin. Mutations of the SH3, SH2, and DNA binding domains did not abolish the inhibition of c-Abl kinase by F-actin. Catalytic domain substitutions that affect the regulation of c-Abl by the retinoblastoma protein or the ataxia telangiectasia-mutated kinase also did not abolish the inhibition of c-Abl by F-actin. Interestingly, among these c-Abl mutants, only the DeltaF-actin c-Abl retained kinase activity in detached cells. Taken together, the data suggest that F-actin is an inhibitor of the c-Abl tyrosine kinase and that this inhibition contributes in part to the reduced Abl kinase activity in detached cells.  相似文献   

17.
c-Abl is a cytoplasmic tyrosine kinase involved in several signal transduction pathways. Here we report that c-Abl is involved also in insulin receptor signaling. Indeed, c-Abl tyrosine kinase is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation, and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, anti-phosphotyrosine blots indicate that c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signaling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signaling.  相似文献   

18.
c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号