首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel 'ureidopeptide' substrate analog inhibitor of the HIV-1 protease, created by substitution of a urea for the scissile amide bond of a hexapeptide substrate, was synthesized and tested for inhibition of HIV-1 protease. This inhibitor was designed as a stereochemical mutant of an earlier ureidopeptide inhibitor in which the P1' phenylalanine residue was changed from an l-isomer to a d-isomer. This was done in an attempt to increase binding to the enzyme by compensating for a lengthening of the peptide backbone. The inhibitor was synthesized from two protected tripeptide precursors using an oxidative Hoffmann rearrangement of a C-terminal peptide amide. The new inhibitor was found to inhibit HIV-1 protease with an observed IC(50) of 47 mum.  相似文献   

2.
Affinity purification of the HIV-1 protease   总被引:5,自引:0,他引:5  
An inhibitor of the HIV-1 protease has been employed in the generation of a resin which allows the rapid purification of this enzyme. A peptide substrate analogue, H2N-Ser-Gln-Asn-(Phe-psi[CH2N]-Pro)-Ile-Val-Gln-OH, was coupled to agarose resin. The HIV-1 protease was expressed in E. coli and the supernatant from lysed cells was passed through the affinity resin. Active HIV-1 protease was then eluted with a buffer change to pH 10 and 2 M NaCl. Final purification to a homogeneous preparation, capable of crystallization, was achieved with hydrophobic interaction chromatography. Solutions containing HIV-1 protease bound to competitive inhibitors do not bind to the column.  相似文献   

3.
Siviter RJ  Nachman RJ  Dani MP  Keen JN  Shirras AD  Isaac RE 《Peptides》2002,23(11):2025-2034
Drosophila melanogaster angiotensin converting enzyme (Ance) and angiotensin converting enzyme related (Acer) are single domain homologs of mammalian peptidyl dipeptidase A (angiotensin I-converting enzyme) whose physiological substrates have not as yet been identified. We have investigated the in vitro substrate specificities of the two peptidases towards a variety of insect and mammalian peptides. Ance was generally much better than Acer at hydrolyzing peptides of 5-13 amino acids in length. Only two of the peptides, [Leu(5)]enkephalinamide and leucokinin-I were cleaved faster by Acer. Increasing NaCl concentration had opposite affects on the cleavage of [Leu(5)]enkephalin and [Leu(5)]enkephalinamide by Acer, decreasing the activity towards [Leu(5)]enkephalin but increasing the activity towards [Leu(5)]enkephalinamide. Of the insect peptides tested, the tachykinin-related peptide, Lom TK-1, proved to be the best substrate for Ance with a k(cat)/K(m) ratio of 0.122s(-1) microM(-1). However, in comparison, the D. melanogaster tachykinins, DTK-1, DTK-2, DTK-3 and DTK-4 were poor Ance substrates. DTK-5 was the best substrate of this family, but the apparent high K(m) for hydrolysis by Ance suggested that this peptide would not be a natural Ance substrate. This low affinity for DTK-5 is the likely reason why the peptide was not rapidly degraded in D. melanogaster hemolymph, where Ance was shown to be a major peptide-degrading activity.  相似文献   

4.
[3H]Dynorphin A(1-8) is readily metabolised by rat lumbosacral spinal cord tissue in vitro, affording a variety of products including a significant amount (20% recovered activity) of [3H][Leu5]enkephalin. In the presence of the peptidase inhibitors bestatin, captopril, thiorphan, and leucyl-leucine, [3H][Leu5]enkephalin was the major metabolic product, accounting for 60% of recovered activity. Production of [3H][Leu5]enkephalin was seen across all gross brain regions. The enzyme responsible for the cleavage has an optimal substrate length of 8-13 amino acids and is inhibited by N-[1-(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a site-directed inhibitor of the metalloendopeptidase EC 3.4.24.15. However the enzymic breakdown also has properties in common with involvement of endo-oligopeptidase A. Possible consequences of the formation of [Leu5]-enkephalin from the smaller dynorphins are discussed.  相似文献   

5.
Several peptides of diverse structure, reported to possess high affinity and selectivity for the delta opioid receptor, were studied using the mouse isolated vas deferens preparation to determine the effect of peptidase inhibition on their apparent potency. The peptides evaluated included [Leu5] enkephalin, the cyclic enkephalin analogs [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Pen2,p-F-Phe4,D-Pen5]enkephalin (F-DPDPE), the linear enkephalin analogs [D-Ala2,D-Leu5]enkephalin (DADLE) and [D-Ser2(O-tBu), Leu5,Thr6]enkephalin (DSTBULET), and the naturally occurring amphibian peptides Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 (dermenkephalin), Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 (deltorphin I) and Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 (deltorphin II). Concentration-response curves were determined for each peptide in the absence and presence of a combination of the peptidase-inhibiting agents bacitracin, bestatin, and captopril. A wide range of potencies was observed, both in the control state and in the presence of peptidase inhibition. The synthetic enkephalin analogs demonstrated small increases in potency with peptidase inhibition (no increase in the case of DPDPE), whereas the naturally occurring peptides were markedly increased in potency, up to as much as 123-fold for dermenkephalin. In the presence of peptidase inhibition, deltorphin II was the most potent peptide tested (IC50 = 1.13 x 10(-10) molar), and as such is the most potent delta opioid agonist reported to date. Stability to metabolism must be considered in the design and evaluation of in vitro experiments using peptides of this type.  相似文献   

6.
Insertion of bulky tertiobutyl groups into the sequence of [D-Ser2,Leu5]enkephalyl-Thr6 leads to a conformationally induced large increase in selectivity toward rat brain delta-opioid binding sites, as shown by the ratio of apparent affinities for mu and delta receptors of [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6,KI(mu)/KI(delta) = 130, and [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 (O-tert-butyl),KI(mu)/KI(delta) = 280. In addition to a selectivity similar to that of the cyclic compounds [D-Pen2, D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin, the affinity of [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 for the delta sites of rat brain membranes is significantly better (KD = 2.2 nM) than that of [3H][D-Pen2,D-Pen5]enkephalin (KD approximately 8.5 nM). Therefore, [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 seems to be the most appropriate delta-probe currently available for binding studies. Moreover, the lipophilic and protected peptide [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl) behaves as the most specific ligand for the delta-opioid binding sites and appears appropriate for in vivo investigations. The inactive analogue [D-Thr2(O-tert-butyl),Leu5]enkephalyl-Thr6 might serve as a negative control in biochemical or pharmacological studies.  相似文献   

7.
Neutral endopeptidase 24.11 contains an active site arginine believed to function in substrate binding. This arginine is thought to form an ionic interaction with the COOH-terminal carboxylate of NEP substrates. The functionality of arginine 102 has been investigated by using site-directed mutagenesis to produce mutants in which this residue was converted to a lysine, glycine, glutamine, or glutamate. All of the mutants exhibited essentially full activity as determined with a synthetic peptide amide, glutaryl-Ala-Ala-Phe-4-methoxy-2-naphthylamide. In contrast, activity was detected only with the wild-type enzyme and the lysine mutant using a synthetic substrate containing a free COOH-terminal carboxylate, dansyl-Gly-Trp-Gly. Inhibition studies with the physiologically active peptide substrates substance P, endothelin, and angiotensin I, as well as substance P free acid, [D-Ala2,Leu5]enkephalin, and [D-Ala2,Leu5]enkephalinamide indicated a lack of importance of arginine 102 in substrate binding. With [D-Ala2,Met5]enkephalin and the chemotactic peptide, N-formyl-Met-Leu-Phe, a significant decrease in affinity is observed with the arginine 102 mutants. These results suggest that the contribution of arginine 102 to substrate binding is dependent upon the strength of other subsite interactions. Examination of dipeptides as inhibitors indicates that the nature and orientation of the P'2 residue is important in determining the strength of the interaction of arginine 102 with its substrates.  相似文献   

8.
Analogues of peptides ranging in size from three to six amino acids and containing the hydroxyethylene dipeptide isosteres Phe psi Gly, Phe psi Ala, Phe psi NorVal, Phe psi Leu, and Phe psi Phe, where psi denotes replacement of CONH by (S)-CH(OH)CH2, were synthesized and studied as HIV-1 protease inhibitors. Inhibition constants (Ki) with purified HIV-1 protease depend strongly on the isostere in the order Phe psi Gly greater than Phe psi Ala greater than Phe psi NorVal greater than Phe psi Leu greater than Phe psi Phe and decrease with increasing length of the peptide analogue, converging to a value of 0.4 nM. Ki values are progressively less dependent on inhibitor length as the size of the P1' side chain within the isostere increases. The structures of HIV-1 protease complexed with the inhibitors Ala-Ala-X-Val-Val-OMe, where X is Phe psi Gly, Phe psi Ala, Phe psi NorVal, and Phe psi Phe, have been determined by X-ray crystallography (resolution 2.3-3.2 A). The crystals exhibit symmetry consistent with space group P6(1) with strong noncrystallographic 2-fold symmetry, and the inhibitors all exhibit 2-fold disorder. The inhibitors bind in similar conformations, forming conserved hydrogen bonds with the enzyme. The Phe psi Gly inhibitor adopts an altered conformation that places its P3' valine side chain partially in the hydrophobic S1' pocket, thus suggesting an explanation for the greater dependence of the Ki value on inhibitor length in the Phe psi Gly series. From the kinetic and crystallographic data, a minimal inhibitor model for tight-binding inhibition is derived in which the enzyme subsites S2-S2' are optimally occupied. The Ki values for several compounds are compared with their potencies as inhibitors of proteolytic processing in T-cell cultures chronically infected with HIV-1 (MIC values) and as inhibitors of acute infectivity (IC50 values). There is a rank-order correspondence, but a 20-1000-fold difference, between the values of Ki and those of MIC or IC50. IC50 values can approach those of Ki but are highly dependent on the conditions of the acute infectivity assay and are influenced by physiochemical properties of the inhibitors such as solubility.  相似文献   

9.
Enkephalin convertase, an enkephalin-synthesizing carboxypeptidase present in adrenal medulla chromaffin granules, has also been detected in brain and pituitary. To determine whether these three carboxypeptidase activities represent the same enzyme, we purified and characterized enkephalin convertase from adrenal medulla, whole brain, and whole pituitary. Enzyme from all three tissues co-purifies on DEAE-cellulose, gel filtration, concanavalin A, and L-arginine affinity columns, resulting in a 135,000-fold, 110,000-fold, and 2,800-fold purification for bovine adrenal medulla, brain, and pituitary, respectively. Purified enkephalin convertase appears homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, showing a single band with an apparent molecular weight of 50,000 for enzyme isolated from all three tissues. Adrenal, brain, and pituitary enkephalin convertase are similarly inhibited by hexapeptide enkephalin precursors and active site-directed inhibitors. Both [Met]-and [Leu]enkephalin-Arg6 inhibit enkephalin convertase with Ki values between 50 and 80 microM, while [Met]-and [Leu]enkephalin-Lys6 are 3-fold less potent. Two active site-directed inhibitors, guanidinopropylsuccinic acid and guanidinoethylmercaptosuccinic acid, are potent inhibitors of all three enzymes with Ki values of 8-9 nM. A series of dansylated di-, tri-, and tetrapeptide substrates are hydrolyzed by enkephalin convertase with similar kinetic properties (Km, Vmax, and Kcat/Km) for the three enzymes. This evidence suggests that enkephalin convertase activity represents the same enzyme in adrenal medulla, brain, and pituitary. Enkephalin convertase may be involved in the production of other peptide neurotransmitters and hormones besides enkephalin.  相似文献   

10.
The cyclic analogue of [Leu5]enkephalin--cyclo (Lys-Tyr-Gly-Gly-Phe-Leu) and two corresponding linear hexapeptides with lysine residue attached to the N- or C-terminus of the molecule have been synthesized by classical methods of peptide chemistry. The addition of lysine residue to the N-terminus of cyclization of the molecule reduce the interaction of these analogues with both central and peripheral opiate receptors. The addition of lysine residue to the C-terminus of the molecule through the epsilon-amino group does not affect the interaction of the analogue with mu-receptors but reduces approximately tenfold its affinity for delta-receptors. All three analogues have analgesic potency similar to that of [Leu5]enkephalin as assayed after intracisternal administration to mice.  相似文献   

11.
Leucine- and methionine-enkephalins inhibit the Na+-dependent transport of proline into plasma membrane vesicles derived from synaptosomes. Glycine transport is weakly inhibited by enkephalins whereas there is no inhibition of transport of glutamic acid, aspartic acid, or gamma-aminobutyric acid. The inhibition of proline uptake is observed with des-tyrosyl-enkephalins but not with morphine, dynorphin(1-13), or beta-endorphins. Furthermore, enkephalin-induced inhibition of proline transport is not antagonized by naloxone. [Leu]enkephalinamide and modified [Leu]enkephalins with greater selectivity for the delta-subclass of enkephalin binding sites are less effective than [Leu]enkephalin in the inhibition of proline transport. Specific binding of [3H]Leu-enkephalin to the plasma membrane vesicles is demonstrated, and des-Tyr-[Leu]enkephalin competes with Leu-enkephalin for [Leu]enkephalin binding sites. The similarity in the concentrations of des-Tyr-[Leu]enkephalin required to compete for specific [Leu]enkephalin binding and to inhibit proline transport suggests that a specific subclass of enkephalin binding sites, distinguished by their recognition of both the enkephalins and their des-tyrosyl derivatives, may be associated with the synaptic proline transport system.  相似文献   

12.
Skin of the frog Phyllomedusa sauvagei contains a cDNA sequence that codes for the selective mu-receptor peptide dermorphin and a new heptapeptide we have designated as dermorphin gene-associated peptide (DGAP). Investigation of the opioid receptor binding characteristics of synthetic DGAP and [D-Met2]DGAP revealed that the latter peptide had high affinity and selectivity for delta-type opioid receptors in rat brain synaptosomes. The IC50 values for DGAP on mu- and delta-receptors were only 28 microM and 670 nM, respectively, while that for [D-Met2]DGAP was 0.80 nM for delta-receptors and greater than 1 microM for mu-receptors yielding a very high delta selectivity ratio (SR) of 1345. In comparison, the SR values for [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, and [D-Pen2,5]enkephalin, ligands which are considered to be specific for delta-receptors, were 20, 42, and 301, respectively. Dermorphin, which contains a D-Ala2 residue and is a selective mu-receptor ligand (Lazarus, L.H., Guglietta, A., Wilson, W.E., Irons, B.J., and de Castiglione, R. (1989) J. Biol. Chem. 264, 354-362), exhibits a SR of 0.0055 similar to that for the conventional mu-agonist [D-Ala2,NMePhe4,Gly-ol]enkephalin (0.0040). This finding that frog skin cDNA contains the information to code for dermorphin and DGAP, or the presumed [D-Met2]DGAP molecule, which are among the most selective high affinity opioid ligands described for mu- and delta-receptors, may permit new insight into the design of future opioid receptor agonists and antagonists.  相似文献   

13.
[3H]Guanidinoethylmercaptosuccinic acid (GEMSA), a potent inhibitor of enkephalin convertase, binds to membrane and soluble fractions of tissue homogenates saturably and reversibly with a KD of 6 nM. Specific binding accounts for greater than 95% of total binding. The highest levels of [3H]GEMSA binding occur in the pituitary gland and the brain, with much lower levels in peripheral tissues. GEMSA, guanidinopropylsuccinic acid, 2-mercaptomethyl-3-guanidinothiopropionic acid, aminopropylmercaptosuccinic acid, [Leu] enkephalin-Arg, and [Met]enkephalin-Arg inhibit [3H] GEMSA binding to crude rat brain homogenates, to crude bovine pituitary homogenates, and to pure enkephalin convertase with equal potencies. Their Ki values against [3H]GEMSA binding are similar to their Ki values against enkephalin convertase activity. EDTA and 1,10-phenanthroline markedly inhibit both binding and enzymatic activity. The ratio of the Vmax for 5-dimethylaminonaphthalene-1-sulfonyl-Phe-Leu-Arg to the Bmax (maximal number of binding sites) for [3H]GEMSA is about 2,000 min-1 in both pure enzyme preparations and crude tissue homogenates. [3H] GEMSA binding activity is found only in fractions containing enkephalin convertase during enzyme purification from bovine pituitary by L-arginine affinity chromatography. These data confirm that [3H]GEMSA binds only to enkephalin convertase in crude homogenates under our assay conditions. CoCl2 activates enzyme activity without altering the Ki of GEMSA against enzymatic hydrolysis and weakly inhibits [3H] GEMSA binding by increasing the KD.  相似文献   

14.
Seven new antagonists of bombesin (Bn)/gastrin-releasing peptide (GRP) containing C-terminal Trp or Tpi (2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-3-carboxylic acid) in a reduced peptide bond were synthesized by solid phase methods and evaluated biologically. The reduced bond in four [Leu13 psi(CH2NH)Trp14]Bn(6-14) analogs was formed by reductive alkylation at the dipeptide stage. In the case of three [Leu13 psi(CH2N)Tpi14]Bn(6-14) analogs, the Trp dipeptide with reduced bond was reacted with formaldehyde to form the corresponding Tpi derivative. These Tpi-containing analogs have a new reduced bond which is structurally more constrained. Leu13 psi(CH2N)Tpi14 analogs inhibit [125I][Tyr4]bombesin binding to Swiss 3T3 cells with IC50 values of 2-4 nM, compared to 5-10 nM for Leu13 psi(CH2NH)Trp14 analogs. Leu13 psi(CH2N)Tpi14 analogs are also more potent than Leu13 psi(CH2NH)Trp14 analogs in growth inhibition studies using Swiss 3T3 cells. The two best bombesin antagonists of this series, [D-Trp6,Leu13 psi(CH2N)Tpi14]Bn(6-14) (RC-3415) and [Tpi6,Leu13 psi(CH2N)Tpi14]Bn(6-14) (RC-3440), inhibited GRP-stimulated growth of Swiss 3T3 cells with IC50 values less than 1 nM. RC-3440 was also active in vivo, suppressing GRP(14-27)-stimulated serum gastrin secretion in rats. Bombesin/GRP antagonists, such as RC-3440, containing the new reduced bond (CH2N) reported herein are very potent.  相似文献   

15.
M Altstein  Y Dudai  Z Vogel 《FEBS letters》1984,166(1):183-188
Two proteolytic activities that degrade [Leu5]enkephalin were found in Torpedo californica electric organ. One is a soluble aminopeptidase that degrades enkephalin at the Tyr1-Gly2 peptide bond, and the second is an endopeptidase that degrades enkephalin at the Gly3-Phe4 peptide bond. The aminopeptidase is inhibited by low concentrations of puromycin and bestatin. More than 60% of the endopeptidase is associated with the particulate fraction and is almost completely inhibited by low concentrations of captopril (SQ 14225) or SQ 20881 (potent inhibitors of angiotensin converting enzyme). Thiorphan and phosphoramidon (potent enkephalinase inhibitors) are much less effective. The pattern of cleavage and inhibition of the particulate endopeptidase thus resembles that of angiotensin converting enzyme.  相似文献   

16.
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.  相似文献   

17.
P W Schiller  B Eggimann  T M Nguyen 《Life sciences》1982,31(16-17):1777-1780
Analogs of dynorphin-(1-13) with modifications in the enkephalin segment were compared with correspondingly modified analogs of [Leu5]enkephalin in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assay as well as in mu- and delta-receptor selective binding assays. The obtained results indicate that a) the enkephalin binding domain of the dynorphin (kappa) receptor has structural requirements which are distinct from those of the enkephalin binding site at the mu-receptor and b) the introduction of an identical conformational constraint in [Leu5]enkephalin and in the enkephalin segment of dynorphin-(1-13) produces a superpotent agonist in both cases. Fluorescence energy transfer measurements with the active [4-tryptophan]analogs of dynorphin-(1-13) and [Leu5]enkephalin and with dynorphin-(1-17) demonstrated a more extended conformation of the N-terminal tetrapeptide segment in [Trp4]dynorphin-(1-13) than in [Trp4, Leu5]enkephalin as well as the absence of an interaction between the N- and C-terminal segments of dynorphin-(1-17).  相似文献   

18.
The effects of electrical field stimulation on the contents of [Met]enkephalin and [Leu]enkephalin were determined in myenteric plexus-longitudinal muscle preparations of the guinea-pig small intestine. Cycloheximide (0.1 mM) was present in all experiments to prevent de nouveau biosynthesis. The two enkephalins were separated by high performance liquid chromatography and assayed on the mouse vas deferens. Stimulation with submaximal pulses (50 mA, 0.5 ms) at a frequency of 10 Hz caused maximal losses of about 35% of [Met]enkephalin and [Leu]enkephalin after 3 h (108000 pulses). The plot of log (enkephalin content) against number of pulses was steeper during the first 30 min than during the later periods. Tetraethylammonium bromide (TEA, 10 mM) increased the [Met]enkephalin and [Leu]enkephalin contents of the non-stimulated preparations by about 50%. When the preparations were stimulated in the presence of TEA at 50 mA and 1 Hz, the plots of loss of enkephalins against number of pulses were linear until the maximum of about 50% was reached. Compared with stimulation in the absence of TEA, the rate constant was 8 times greater for [Leu]enkephalin and 20 times greater for [Met]enkephalin. The absolute losses per pulse were about 13 times greater for [Leu]enkephalin and 27 times greater for [Met]enkephalin than in the absence of TEA. In the presence of bacitracin and a mixture of dipeptides, the enzymatic degradation of the enkephalins was sufficiently suppressed to cause an overflow of 30-60% of the enkephalins lost from their stores into the perifusing Krebs solution. Until it is possible to determine the preformed precursors, which are present in large quantities, the kinetics relationship between these precursors and the enkephalins cannot be investigated. A similar dilemma exists for the relationship between "released' enkephalins and the losses from their stores.  相似文献   

19.
R E Galardy  D Grobelny 《Biochemistry》1983,22(19):4556-4561
Di- and tripeptides with sequences present in collagen that are known to occupy the S1' through S3' subsites at the active site of the collagenase from Clostridium histolyticum do not themselves inhibit this zinc protease. Thus glycylproline, glycylprolylalanine, and their C-terminal amides are not inhibitors. N alpha-Phosphorylglycylproline, N alpha-phosphorylglycyl-L-prolyl-L-alanine, and their C-terminal amides are weak inhibitors with IC50's (concentration causing half-maximal inhibition) of 4.6, 0.8, 3, and 1.5 mM, respectively. Extension of glycyl-L-prolyl-L-alanine to L-leucyl-glycyl-L-prolyl-L-alanine gives a tetrapeptide known to occupy the S1, S1', S2', and S3' subsites of collagenase when present in collagen but that still does not itself inhibit the enzyme. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine, a peptide containing a tetrahedral phosphorus atom at the position of the amide carbonyl carbon of the L-leucylglycyl amide bond of the parent tetrapeptide, inhibits collagenase with an IC50 of 16 microM, at least 1000-fold more potent than the parent peptide. Substitution of the two-carbon ethyl chain of alanine for the five-carbon isoamyl chain of leucine increases the IC50 to 46 microM. Substitution of the n-decyl chain for the isoamyl chain does not change the IC50. (Isoamylphosphonyl)glycyl-glycyl-L-proline contains a tripeptide that does not occupy the S1' through S3' subsites of collagenase when this peptide is present in collagen and thus has an IC50 of 4.4 mM. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine may be an analogue of the tetrahedral transition state for the hydrolysis of the natural collagen substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An amphiphilic substrate was used as the basis of a specific assay for peptidases which generate the opioid peptide methionine enkephalin. The substrate [Homoarg-14C]Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Homoarg is prepared by guanidination of the lysine analogue (which is beta-lipotropin 61-69) with O-methyl-[14C]isourea and is quantitatively adsorbed to dextrancoated charcoal. The COOH-terminal tetrapeptide is not adsorbed and, since it carries the radioactive label, is easily assayed in the charcoal-free supernatant fluid. Two enzyme activities have been identified in rat brain which specifically convert the amphiphilic substrate to enkephalin and the resulting tetrapeptide tail. These activities are soluble and particulate, respectively, and differ in regional distribution within the brain, in their inhibition by other peptides and in Km. Based upon these characteristics, it seems likely that the soluble activity is not primarily involved in the biosynthesis of enkephalin. It does seem possible, however, that the particulate activity which we describe may play a role in opioid peptide synthesis from larger precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号