首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Chromium occurs in the workplace primarily in the valence forms Cr(III) and Cr(VI). Recent studies have demonstrated that sodium dichromate [Cr(VI)] induces greater oxidative stress as compared with Cr(III), as indicated by the production of reactive oxygen species by peritoneal macrophages and hepatic mitochondria and microsomes, and enhanced excretion of urinary lipid metabolites and hepatic DNA-single strand breaks (SSB) following acute oral administration of Cr(III) and Cr(VI). We have therefore examined the chronic effects of sodium dichromate dihydrate [Cr(VI); 10 mg (33.56 μmol)/kg/day] on hepatic mitochondrial and microsomal lipid peroxidation, enhanced excretion of urinary lipid metabolites including malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), acetone (ACON) and propionaldehyde (PROP), and hepatic DNA damage over a period of 90 days. The maximal increases in hepatic lipid peroxidation and DNA damage were observed at approximately 45 days of treatment. Maximum increases in the urinary excretion of MDA, FA, ACT, ACON and PROP were 3.2-, 2.6-, 4.1-, 3.3- and 2.1-fold, respectively, while a 5.2-fold increase in DNA-SSB was observed. The results clearly indicate that chronic sodium dichromate administration induces oxidative stress resulting in tissue damaging effects which may contribute to the toxicity and carcinogenicity of hexavalent chromium.  相似文献   

2.
Benzanthrone, an anthraquinone dye intermediate, is commonly used for the synthesis of a number of polycyclic vat and disperse dyes. Our prior studies have shown that benzanthrone can be metabolized by rat hepatic microsomal cytochrome P450 (P450) (Biochem. Int., 18, 1989, 1237). In this study, the interaction of benzanthrone with rat hepatic microsomal P-450 and its effect on xenobiotic metabolism have been investigated. Parenteral administration of benzanthrone (40 mg/kg body weight) for 3, 7, or 21 days caused no change in the relative body weight or organ weight of rats. The levels of P450 were found to be reduced (33%-50%) in all the benzanthrone-exposed animals at all the time periods. In vitro addition of benzanthrone caused a spectral change with oxidized P450 and concentration-dependent reduction in the carbon monoxide spectrum of dithionite-reduced P450. The addition of benzanthrone to hepatic microsomes prepared from phenobarbital-treated rats resulted in spectral changes characterized by an absorbance maximum at 397 nm indicative of type I binding. In vitro addition of benzanthrone showed a concentration-dependent inhibition of hepatic aminopyrine N-demethylase (APD) and ethoxyresorufin-O-deethylase (ERD) activities with respective I50 values of 9.5 x 10(-4) and 8.0 x 10(-5) M. However, the inhibition of aryl hydrocarbon hydroxylase (AHH) even at the highest concentration of benzanthrone (10(-2) M), was of the order of only 29%. In vivo administration of benzanthrone also led to the inhibition of APD, AHH, and ERD activities at all treatment times although the magnitude of inhibition was of a lower order.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Chromium and its salts induce cytotoxicity and mutagenesis, and vitamin E has been reported to attenuate chromate-induced cytotoxicity. These observations suggest that chromium produces reactive oxygen species which may mediate many of the untoward effects of chromium. We have therefore examined and compared the effects of Cr(III) (chromium chloride hexahydrate) and Cr(VI) (sodium dichromate) following single oral doses (0.50 ld50) on the production of reactive oxygen species by peritoneal macrophages, and hepatic mitochondria and microsomes in rats. The effects of Cr(III) and Cr(VI) on hepatic mitochondrial and microsomal lipid peroxidation and enhanced excretion of urinary lipid metabolites as well as the incidence of hepatic nuclear DNA damage and nitric oxide (NO) production were also examined. Increases in lipid peroxidation of 1.8- and 2.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 hr after the oral administration of 25 mg Cr(VI)/kg, while increases of 1.2- and 1.4-fold, respectively, were observed after 895 mg Cr(III)/kg. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT) and acetone (ACON) were determined at 0–96 hr after Cr administration. Between 48 and 72 hr post-treatment, maximal excretion of the four urinary lipid metabolites was observed with increases of 1.5- to 5.4-fold in Cr(VI) treated rats. Peritoneal macrophages from Cr(VI) treated animals 48 hr after treatment resulted in 1.4- and 3.6-fold increases in chemiluminescence and iodonitrotetrazolium reduction, indicating enhanced production of Superoxide anion, while macrophages from Cr(III) treated animals showed negligible increases. Increases in DNA single strand breaks of 1.7-fold and 1.5-fold were observed following administration of Cr(VI) and Cr(III), respectively, at 48 hr post-treatment. Enhanced production of NO by peritoneal exudate cells (primarily macrophages) was monitored following Cr(VI) administration at both 24 and 48 hr post-treatment with enhanced production of NO being observed at both timepoints. The results indicate that both Cr(VI) and Cr(III) induce an oxidative stress at equitoxic doses, while Cr(VI) induces greater oxidative stress in rats as compared with Cr(III) treated animals.  相似文献   

4.
The metabolism of benzo(a)pyrene [BP], a model carcinogenic PAH, by hepatic microsomes of two duck species, mallard (Anas platyrhynchos) and common merganser (Mergus merganser americanus) collected from chemically-contaminated and relatively non-contaminated areas was investigated. The rate of metabolism of BP by liver microsomes of common merganser and mallard collected from polluted areas (2,650 +/- 310 and 2,200 +/- 310 pmol/min per mg microsomal protein, respectively) was significantly higher than that obtained with liver microsomes of the two species collected from non-polluted areas (334 +/- 33 and 231 +/- 30 pmol/min per mg microsomal protein, respectively). The level of cytochrome P-450 1A1 was significantly higher in the liver microsomes of both duck species from the polluted areas as compared to the ducks from the non-polluted areas. The major BP metabolites, including BP-9, 10-diol, BP-4, 5-diol, BP-7, 8-diol, BP-1, 6-dione, BP-3, 6-dione, BP-6, 12-dione, 9-hydroxy-BP and 3-hydroxy-BP, formed by liver microsomes of both duck species from polluted and non-polluted areas, were qualitatively similar. However, the patterns of these metabolites were considerably different from each other. Liver microsomes of ducks from the polluted areas produced a higher proportion of benzo-ring dihydrodiols than the liver microsomes of ducks from the non-polluted areas, which converted a greater proportion of BP to BP-phenols. The predominant enantiomer of BP-7,8-diol formed by hepatic microsomes of the two duck species had an (-)R,R absolute stereochemistry. The data suggest that duck and rat liver microsomal enzymes have different regioselectivity but similar stereoselectivity in the metabolism of BP.  相似文献   

5.
G F Rush  J B Hook 《Life sciences》1984,35(2):145-153
Rat renal microsomes catalyzed the glucuronidation of l-naphthol, 4-methylumbelliferone and p-nitrophenol, whereas morphine and testosterone conjugation were not detected. In contrast, all five substrates were conjugated by hepatic microsomes; the activity was typically 5-10 times greater than with renal microsomes. Renal microsomal UDP-glucuronyltransferase toward l-naphthol was fully activated (six-fold) by 0.03% deoxycholate while the hepatic enzyme was fully activated (eight-fold) by 0.05% deoxycholate. Full activation of hepatic UDP-glucuronyltransferase occurred when microsomes had been preincubated at 0 C with deoxycholate for 20 min. This effect of preincubation was not observed with renal microsomes. The presence of 0.25M sucrose in the buffers during renal microsomal preparation resulted in a two-fold greater rate of l-naphthol conjugation in both unactivated and activated microsomes than renal microsomes prepared in phosphate buffers alone. Preparation of hepatic microsomes with or without 0.25M sucrose had no effect on UDP-glucuronyltransferase activity. Unactivated (-deoxycholate) renal enzyme was activated when incubations were done at a low pH (5.7), whereas fully activated (0.03% deoxycholate) renal microsomal UDP-glucuronyltransferase displayed a pH optimum at 6.5. Renal microsomal UDP-glucuronyltransferase activity toward l-naphthol, p-nitrophenol and 4-methylumbelliferone was induced by pretreatment of rats with beta-naphthoflavone and trans-stilbene oxide but not by phenobarbital or 3-methylcholanthrene. These data demonstrate that renal UDP-glucuronyltransferases are different from the hepatic enzymes with regard to biochemical properties, substrate specificity and in response to chemical inducers of xenobiotic metabolism.  相似文献   

6.
The effect of Troleandomycin (TAO) and pregnenolone 16 alpha-carbonitrile (PCN) on the hepatic microsomal progesterone metabolism in the rat is evaluated. Over thirteen hydroxylated progesterone derivatives are detected, including the novel 6 beta, 21-, 6 beta, 16 alpha-, 6 beta, 16 beta- and 2,21-dihydroxy derivatives, suggesting the induction of several cytochrome P-450 isozymes. PCN treatment results overall in an augmented production of progesterone metabolites whereas TAO treatment both induces and represses specific hydroxylase activities. Progesterone metabolism with purified isozymes isolated from liver microsomes from TAO and PCN treated rats differs significantly from that observed with intact microsomes, reflecting the complexity of the induction pattern of the cytochrome P-450 III family.  相似文献   

7.
The soy isoflavones daidzein, genistein and glycitein are extensively metabolized by rat liver microsomes to a variety of catechol metabolites. Hydroxylated metabolites of daidzein and genistein have also been demonstrated in incubations with human hepatic microsomes and in the urine of humans after ingestion of soy food. Although the microsomal metabolism of formononetin and biochanin A is dominated by demethylation to daidzein and genistein, respectively, catechols of the parent isoflavones and of the demethylation products are also formed. Thus, oxidative metabolism appears to be common among isoflavones and may have implications for their biological activities. As genistein but not daidzein exhibits clastogenic activity in cultured mammalian cells, the role of oxidative metabolism for the genotoxicity of isoflavones is of particular interest.  相似文献   

8.
The in vitro metabolism of precocene I by liver microsomes from control and treated rats and the effects of precocene I on the function and histology of the rat liver were examined. The major metabolites (80-90% of total metabolites) from all microsomal preparations were the cis and trans 3,4-diols of precocene I produced with a cis/trans isomer ratio of 1:2. These diols appear to arise mainly by spontaneous hydrolysis of precocene I 3,4-oxide. (+)-(3R,4R)-cis- and (-)-(3R,4S)-trans-precocene I 3,4-diols were the predominant enantiomers of the 3,4-diol formed. The enantiomeric excess of these diols (2-50%) is dependent on the microsomal preparation, with microsomes from control rats exhibiting the highest stereoselectivity and microsomes from phenobarbital-treated rats the least. 6-Hydroxyprecocene I was the next major metabolite and was formed to the extent of 5% (control), 10% and 17% (phenobarbital and 3-methylcholanthrene treatment, respectively) of total metabolites. Treatment of rats with a single i.p. dose of precocene I (300 mg/kg) resulted in extensive hepatic damage as evidenced by a marked increase of plasma glutamic pyruvic transaminase levels and histologic observation in liver sections of severe centrolobular necrosis. Although phenobarbital treatment of rats increased the rate of liver microsomal metabolism of precocene I by approximately 50% (nmol products/nmol cytochrome P-450/min) compared to liver microsomes from control rats, hepatic damage caused by precocene I was not significantly affected. Depletion of glutathione levels in the rats with diethyl maleate prior to precocene I treatment dramatically increased the severity of hepatic insult, whereas treatment of the rats with the mixed function oxidase inhibitor piperonyl butoxide prior to treatment with precocene I blocked hepatic damage. Treatment of rats with cysteamine prior to treatment with precocene I protected the animals against the toxic effects. Neither cis nor trans precocene I 3,4-diol nor 3,4-dihydroprecocene I elicited impaired liver function or cellular damage. The above results are consistent with the view that precocene I 3,4-oxide is the metabolite responsible for the hepatotoxic effects observed when precocene I is injected into rats.  相似文献   

9.
Tannic acid is converted to four metabolites on incubation with isolated rat liver microsomes. Bis-(3,4,5-trihydroxyphenyl)methanone (I); 3,4,6,7,9,10-hexahydroxy-2,11-epoxy-1,12-(epoxy-methano)-14H , 16H-benzo[b](1,4)benzodioxepino [3,2-g](1,4)benzodioxepin-14,16,17-trione (II) and 1,1,2-trimethyl-1-ethanyl-2-ylidene tris(3,4,5-trihydroxybenzoate) (III) were isolated from the post-microsomal supernatant of the incubate while 6,12,18,26,27,29,31,33-octahydroxy-22,22-dimethyl-2,8,14,20-tet raoxapentacyclo (22.2.2.2(4,7).2(10,13).2(16,19) tetratriaconta-4,6,10,12,16,18,24,26,27,29,31,33-dodecene-3, 9,15,21,23-pentone (IV) was found attached with the microsomal fraction. Metabolite (III) was found to be a potential carcinogen on the basis of microsomal degranulation technique.  相似文献   

10.
The 5,6-; 8,9-; 11,12- and 14,15-epoxyeicosatrienoic acids and their respective hydration products, the vic-diols, recently reported as metabolites of arachidonic acid in rat liver microsomes, were examined for effect on release of 45Ca from canine aortic smooth muscle microsomes. At 10(-6) M, the diols had no effect, but the 5,6-; 11,12- and 14,15-epoxyacids increased the loss of 45Ca. Further studies with the 14,15-epoxyacid demonstrated a dose-dependent decrease of Ca++ uptake (ATP present) in canine aortic microsomes in 0.03 mM Ca++, whereas Ca++ binding (ATP absent) was not affected. Ca++ uptake, binding and release in rat liver microsomes was similarly affected by the 14,15-epoxyacid, the major epoxyeicosatrienoic acid derivative produced by rat liver microsomal incubations. It is suggested that alterations in Ca++ metabolism might be a possible mechanism of action for these derivatives of arachidonic acid.  相似文献   

11.
Adult male Sprague-Dawley rats were exposed by inhalation to various concentrations of styrene vapors (25, 50, 100, or 200 ppm) 6 h/day, 5 days/week, for 4 consecutive weeks. The concentrations were varied from day to day according to a random pattern allowing treated animals to be exposed five times to each concentration of styrene. Each day, the following urinary metabolites were analysed from samples collected during exposure (0-6 h) and after exposure (6-24 h): mandelic acid; phenylglyoxylic acid; and two mercapturic acids, N-acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine (M1) and N-acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine (M2). Various parameters of renal toxicity and hepatic microsomal and cytosolic enzyme activities were also measured. The results show that there is a very good relationship between the excretion of all four styrene metabolites and the degree of daily exposure to styrene over the entire period of urine collection, with correlation coefficients ranging from 0.82 to 0.98. The correlation was poor for mandelic acid during the 0-6 h period. There was no evidence that repeated exposure to styrene caused renal toxicity, nor induced hepatic microsomal enzyme activities; cytosolic glutathione S-transferase activity was increased moderately by 1.5 times. Thus, under conditions of exposure to styrene likely to be found in the workplace, all four metabolites measured were good indicators of styrene exposure throughout the length of the experiment. Since mercapturic acids result from the conjugation of styrene oxide with glutathione, the data suggest that measurement of these metabolites offers the possibility to monitor internal exposure to a toxic electrophilic compound more directly.  相似文献   

12.
A capillary electrophoresis method has been developed to separate the products of liver microsomal testosterone metabolism. The microsomal mixture undergoes liquid-liquid extraction and pre-concentration, and then electrophoretic analysis takes less than 25 min including capillary conditioning steps. The development of the complex background electrolyte (Tris-HCl and borate buffers, sodium dodecyl sulfate, β-cyclodextrin and ethanol) necessary for this separation is described. A z-type capillary flow cell is used to obtain adequate detection sensitivity. The proportion in which the metabolites are produced as determined by this method allows assignment of the relative activity of cytochrome P-450 enzymes in the microsomes. The technique is useful for comparison of activity in normal and abnormal hepatic microsomes.  相似文献   

13.
Previous studies in our laboratory had demonstrated that addition of alpha-naphthoflavone (ANF) to lymphocytes from smokers or polychlorinated biphenyls (PCB)s-exposed individuals caused an increase in sister chromatid exchange (SCE) frequency whereas lymphocytes from controls were relatively unaffected. In order to investigate the mechanism responsible, metabolism of ANF by uninduced and 2,3,7,8-tetrachlorodibenzodioxin (TCDD)-induced microsomes was studied as a function of microsomal protein concentration and incubation time. Nonpolar metabolites were analyzed and the amount of conjugated (polar) and protein-bound metabolites determined. The initial ANF-metabolism rate was 10-fold higher in TCDD-induced microsomes (4.9 +/- 0.6 nmol/min per mg TCDD-induced microsomal protein vs. 0.5 +/- 0.2 nmol/min per mg uninduced microsomal protein) than in uninduced microsomes. Moreover, uninduced microsomes no longer metabolize ANF after 30-40 min while TCDD-induced microsomes metabolize ANF for longer than 2 h or until all the ANF is gone. In addition to the metabolites formed by uninduced microsomes [7,8-dihydro-7,8-dihydroxy-ANF (7,8-dihydrodiol); 5,6-dihydro-5,6-dihydroxy-ANF (5,6-dihydrodiol); 5,6-oxide-ANF and 6-hydroxy-ANF], TCDD-induced microsomes from unidentified metabolites. When TCDD-induced microsomes and 40 microM ANF were added to Chinese hamster ovary (CHO) cells, we found a correlation between the concentration of 5,6-oxide-ANF and clastogenicity to CHO cells. However, purified 5,6-oxide-ANF did not induce SCEs in CHO cells in the absence or presence of TCDD-induced microsomes. However, a minor metabolite (identified as the 9,10-dihydro-9,10-dihydroxy-ANF by acid dehydration) formed with TCDD-induced microsomes produces clastogenicity in CHO cells. These data indicate that a minor metabolite of ANF is a potent clastogen which suggests that this metabolite may be responsible for the ANF-mediated increases in SCE frequency in lymphocytes from smokers or PCB-exposed individuals.  相似文献   

14.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants and complete carcinogens in rodents. Metabolism of lower chlorinated congeners with rat liver microsomes was investigated in earlier studies and DNA adduction was also reported. The current study was designed to compare DNA adducts formed after bioactivation of PCBs with rat, mouse and human hepatic microsomes, and to investigate the role of quinoid PCB metabolites in DNA adduct formation. Eight congeners ranging from mono- to hexachlorinated biphenyls were tested. Metabolites obtained through microsomal bioactivation as well as synthetic quinoid metabolites of 4-monochlorobiphenyl (4-CB) were incubated with calf-thymus DNA (CT-DNA), and the resulting adducts were analyzed by the 32P-post-labelling method. DNA adducts were formed with mono- di- and tri-chlorinated congeners, but not with higher chlorinated congeners. Similar adduct patterns were observed for 2-monochlorobiphenyl (2-CB) activated with hepatic microsomes from rat, mouse and human, while 4-CB, 3,4-dichlorobiphenyl (3,4-CB) and 3,4,5-trichlorobiphenyl (3,4,5-CB) showed similar patterns for two out of the three microsomal systems tested. 4,4' -trichlorobiphenyl (4,4' -CB) showed different adduct patterns in all microsomal systems. Higher adduct levels were obtained with the rodent microsomes compared with human microsomes and were related to higher cytochrome P450 activity. When adducts derived from microsomal activation of 4-CB were compared by co-chromatography with those derived from the incubation of DNA with synthetic 2-(4' -chlorophenyl)-1,4-benzoquinone (4-BQ), one adduct co-migrated in three different chromatography systems. This study demonstrates that rodents as well as human hepatic enzymes metabolize lower chlorinated biphenyl congeners to reactive intermediates that form DNA adducts in vitro and shows that the para-quinone metabolites of PCBs are, in part, involved in direct DNA adduction.  相似文献   

15.
R Dixon  P Tormey  R Lambe  A Darragh 《Steroids》1973,22(1):35-46
The metabolism of the retro-steroid 6-chloro-9β,10α:-pregna-1,4,6-triene-3,20-dione (I) has been investigated following oral administration of C-7 tritium labeled drug to a normal woman. Of the total radioactive dose, 47% and 30% were excreted in the urine and feces respectively within 7 days. About 20% of the urinary radioactivity was unconjugated while 70% was released following hydrolysis with β-glucuronidase. Qualitative analysis of a large urine pool from patients receiving I has resulted in the isolation and identification of three metabolites; 6-chloro-20α-hydroxy-9β, 10α-pregna-1,4,6-trien-3-one (II), 6-chloro-20α hydroxy-9β,10α-pregna-4,6-dien-3-one (III) and 20α-hydroxy-9β, 10α-pregna-1,4,6,8(14)-tetraen-3-one (IV). No intact I could be found in the urine indicating that the steroid undergoes complete metabolism in vivo.  相似文献   

16.
The biochemical basis for the marked difference in the rate of the hepatic metabolism of 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB) by Beagle dogs and Sprague-Dawley rats has been investigated. Control dog liver microsomes metabolize this substrate 15 times faster than control rat liver microsomes. Upon treatment with phenobarbital (PB), at least two cytochrome P-450 isozymes are induced in the dog, and the hepatic microsomal metabolism of 245-HCB is increased on both a per nanomole P-450 basis (twofold) and a per milligram protein basis (fivefold). One of the PB-induced isozymes, PBD-2, has been purified to a specific content of 17-19 nmol/mg protein and to less than 95% homogeneity, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In a reconstituted system containing cytochrome b5, this isozyme shows an activity toward 245-HCB which is greater than threefold that seen in intact liver microsomes from PB-induced dogs. A reconstituted system containing the major isozyme induced by PB in the rat (PB-B) metabolizes 245-HCB at 1/10 the rate observed with purified PBD-2. Antibody inhibition studies have shown that PBD-2 accounts for greater than 90% of the hepatic microsomal metabolism of 245-HCB in control and PB-induced dogs, while PB-B only accounts for about half of the metabolism of this compound by microsomes obtained from PB-treated rats. Immunoblot analysis has revealed that the level of PBD-2 in dog liver microsomes increases nearly sixfold with PB treatment, and this increase correlates well with the fivefold increase in the rate of hepatic microsomal metabolism of 245-HCB by dogs. Together these data support a primary role for isozyme PBD-2 in the hepatic metabolism of 245-HCB in control and PB-induced dogs. In addition, these results suggest that, in contrast to rats, dogs can readily metabolize 245-HCB as a result of the presence of a cytochrome P-450 isozyme with efficient 245-HCB metabolizing activity.  相似文献   

17.
The in vitro and in vivo effects of selected natural flavonoids (flavone, flavanone, tangeretin, quercetin, chrysin) on the microsome-catalysed binding of [3H]benzo[a]pyrene to calf thymus DNA were investigated and compared with those of two synthetic flavonoids, 7,8-benzoflavone and 5,6-benzoflavone. In vitro addition of these flavonoids (0.1 mM) to an incubation system containing hepatic microsomes prepared from Aroclor 1254-pretreated rats strongly inhibited BaP-DNA adduct formation (72-89%). The incubation of BaP with hepatic microsomes prepared from animals fed 0.3% quercetin, tangeretin and 7,8-benzoflavone for 2 weeks also resulted in less effective binding of BaP metabolites to added DNA, than with microsomes from untreated rats. Other tested compounds, chrysin, flavone, flavanone and 5,6-benzoflavone showed no or little effect. The influence of flavonoid pretreatment on hepatic microsomal enzymes involved in BaP metabolism has also been examined. Aryl hydrocarbon hydroxylase activity was moderately increased (1.5-1.8-fold) in microsomes prepared from rats fed flavone, tangeretin, 7,8-benzoflavone and 5,6-benzo-flavone. Epoxide hydrolase activity was enhanced by 7,8-benzoflavone (1,6-fold), and by flavone and flavanone (5-fold). These results confirm that flavonoids, in vitro, are potent inhibitors of carcinogen-DNA binding. Oral administration of 0.3% flavonoids alters the properties of liver microsomes, resulting in the decreased ability of BaP metabolites to bind DNA.  相似文献   

18.
An assay for the microsomal hydroxylation of lauric acid (LA), based on HPLC with flow-through radiochemical detection, has been developed. Conditions were optimized for resolution and quantitation of three microsomal metabolites of LA, one of which has not been reported previously as a metabolite of LA in mammalian microsomal incubations. These products, 12-(omega)-hydroxy-LA, 11-(omega-1)-hydroxy-LA, and a novel metabolite, 10-(omega-2)-hydroxy-LA, were isolated by HPLC and identified by gas chromatography/mass spectrometry. In the presence of NADPH, the formation of all three metabolites was linear with time and microsomal protein concentration. Hydrogen peroxide also supported the microsomal metabolism of LA, although the ratio of metabolites was substantially different than that produced by NADPH-supported microsomes. Several biochemical probes (metyrapone, alpha-naphthoflavone, 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride, and 10-undecynoic acid) were used to dissociate the three LA hydroxylase activities. These experiments suggest that the site-specific hydroxylation [omega-, (omega-1)-, (omega-2)-] of LA may be catalyzed by different isozymes of cytochrome P-450.  相似文献   

19.
In vivo studies of hepatic carbohydrate metabolism in (genetically modified) conscious mice are hampered by limitations of blood and urine sample sizes. We developed and validated methods to quantify stable isotope dilution and incorporation in small blood and urine samples spotted onto filter paper. Blood glucose and urinary paracetamol-glucuronic acid were extracted from filter paper spots reproducibly and with high yield. Fractional isotopomer distributions of glucose and paracetamol-glucuronic acid when extracted from filter paper spots were almost identical to those isolated from the original body fluids. Rates of infusion of labeled compounds could be adjusted without perturbing hepatic glucose metabolism. This approach was used in mice to find the optimal metabolic condition for the study of hepatic carbohydrate metabolism. In fed mice, no isotopic steady state was observed during a 6-h label-infusion experiment. In 9-h-fasted mice, isotopic steady state was reached after 3 h of label infusion and important parameters in hepatic glucose metabolism could be calculated. The rate of de novo glucose-6-phosphate synthesis was 143 +/- 17 micromol kg(-1) min(-1) and partitioning to plasma glucose was 79.0 +/- 5.2%. In 24-h-fasted mice, abrupt changes were noticed in whole body and in hepatic glucose metabolism at the end of the experiment.  相似文献   

20.
The metabolism of benzo[a]pyrene by halogenated biphenyl-induced rat hepatic microsomal monooxygenases was determined using a high pressure liquid chromatographic assay system. Incubation of benzo[a]pyrene with microsomes from rats pretreated with phenobarbitone or phenobarbitone-type inducers (2,2',4,4',5,5'-hexachlorobiphenyl, 2,2',4,4',6,6'-hexachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,2',4,4',5,5'-hexabromobiphenyl, and 2,2',5,5'-tetrabromobiphenyl) resulted in increased overall metabolism of the hydrocarbon (less than fourfold) into phenolic, quinone, and diol metabolites, with the most striking increase observed in the formation of 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene. In contrast, the metabolism of benzo[a]pyrene by microsomes from rats induced with 3-methylcholanthrene or 3,3',4,4'-tetrachlorobiphenyl resulted in a greater than 10-fold increase in overall benzo[a]pyrene metabolism, with the largest increases observed in the formation of the trans-7,8- and -9,10-dihydrodiol metabolites of benzo[a]pyrene. However, in comparison to control and phenobarbitone-induced microsomes, the oxidative conversion of benzo[a]pyrene by microsomes induced with 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl into the 6,12-quinone was substantially inhibited. Previous reports have shown that the commercial halogenated biphenyl mixtures, fireMaster BP-6, and Aroclor 1254 are mixed-type inducers and that microsomes from rats pretreated with these mixtures markedly enhance the overall metabolism of benzo[a]pyrene. Not surprisingly, the metabolism of benzo[a]pyrene by microsomes from rats pretreated with the mixed-type inducers, 2,3,3',4,4'-penta-,2,3,3',4,4',5-hexa-, and 2',3,3',4,4',5-hexa- chlorobiphenyl was also increased and the metabolic profile was similar to that observed with fireMaster BP-6 and Aroclor 1254 induced microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号