首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme-[14C] carboxybiotin complex of sheep liver pyruvate carboxylase was isolated and the reaction between this and pyruvate was studied by using the quenched-flow rapid-reaction technique. At 0.5 degrees C the reaction was 80% complete within 180 ms. The reaction was monophasic and obeyed pseudo-first-order kinetics. Increasing concentrations of Mg2+ caused a decrease in the magnitude of the observed pseudo-first-order rate constant. Throughout the carboxylation of pyruvate, the rate-limiting step of the reaction occurred after the dissociation of carboxybiotin from the first sub-site, whereas in the slow phase of the reaction with 2-oxobutyrate this dissociation is the rate-limiting step. It is possible, from the reaction scheme proposed, that the inhibition of overall enzymic activity by high concentrations of Mg2+ could be caused by the transfer of the carboxy group from biotin to pyruvate becoming rate-limiting. The efficacy of a substrate as a signal for the movement of carboxybiotin from the first sub-site is reflected by the amount that the effective affinity of the enzyme- carboxybiotin complex for Mg2+ is lowered. In the presence of the substrates tested, the affinities of the carboxybiotin complex can be arranged in order of increasing magnitude, i.e.: (formula; see text). The kinetics of the decay of the enzyme-[14C] carboxybiotin complex at 0 degree C in the absence of substrates are similar to the reaction with pyruvate except that the carboxybiotin is also unstable in the first sub-site, to some degree. This similarity allows for the proposal of a general scheme for the decarboxylation of the enzyme- carboxybiotin complex in the presence or in the absence of substrates.  相似文献   

2.
Propionate metabolism in Salmonella typhimurium occurs via 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (PrpB). Here we report the X-ray crystal structure of the native and the pyruvate/Mg(2+) bound PrpB from S. typhimurium, determined at 2.1 and 2.3A, respectively. The structure closely resembles that of the Escherichia coli enzyme. Unlike the E. coli PrpB, Mg(2+) could not be located in the native Salmonella PrpB. Only in pyruvate bound PrpB structure, Mg(2+) was found coordinated with pyruvate. Binding of pyruvate to PrpB seems to induce movement of the Mg(2+) by 2.5A from its position found in E. coli native PrpB. In both the native enzyme and pyruvate/Mg(2+) bound forms, the active site loop is completely disordered. Examination of the pocket in which pyruvate and glyoxalate bind to 2-methylisocitrate lyase and isocitrate lyase, respectively, reveals plausible rationale for different substrate specificities of these two enzymes. Structural similarities in substrate and metal atom binding site as well as presence of similar residues in the active site suggest possible similarities in the reaction mechanism.  相似文献   

3.
The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.  相似文献   

4.
While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described.  相似文献   

5.
A radioactive assay for the determination of pyruvate dehydrogenase complex activity in muscle tissue has been developed. The assay measures the rate of acetyl-CoA formation from pyruvate in a reaction mixture containing NAD+ and CoASH. The acetyl-CoA is determined as [14C]citrate after condensation with [14C]-oxaloacetate by citrate synthase. The method is specific and sensitive to the picomole range of acetyl-CoA formed. In eleven normal subjects, the active form of pyruvate dehydrogenase (PDCa) in resting human skeletal muscle samples obtained using the needle biopsy technique was 0.44 +/- 0.16 (SD) mumol acetyl-CoA.min-1.g-1 wet wt. Total pyruvate dehydrogenase complex (PDCt) activity was determined after activation by pretreating the muscle homogenate with Ca2+, Mg2+, dichloroacetate, glucose, and hexokinase. The mean value for PDCt was 1.69 +/- 0.32 mumol acetyl-CoA.min-1.g-1 wet wt, n = 11. The precision of the method was determined by analyzing 4-5 samples of the same muscle piece. The coefficient of variation for PDCa was 8% and for PDCt 5%.  相似文献   

6.
1. Rat brain-cortex mitochondria were incubated in media containing 1, 5 or 100mm-K(+) in the presence of ADP, uncoupler (FCCP, carbonyl cyanide p-trifluoro-methoxyphenylhydrazone) or valinomycin while metabolizing pyruvate and malate, or acetylcarnitine and malate or glutamate and malate as substrates. Both the uptake of oxygen and disappearance of substrate were measured under these conditions. 2. With pyruvate and malate as substrate in the presence of both ADP and valinomycin, both the uptake of oxygen and disappearance of pyruvate increased markedly on increasing the K(+) content of the incubation medium from 5 to 100mm-K(+). However, in the presence of uncoupler (FCCP), although the oxygen uptake doubled little change was observed in the rate of disappearance of pyruvate on increasing the K(+) concentration. 3. Only small changes in uptake of substrate and oxygen were observed in the presence of ADP, uncoupler (FCCP) or valinomycin on increasing the K(+) concentration when acetylcarnitine+malate or glutamate+malate were used as substrates by brain mitochondria. 4. Further, increasing the K(+) concentration from 1 to 20mm when rat brain mitochondria were oxidizing a mixture of pyruvate and glutamate in the presence of malate and ADP caused a 30% increase in the respiration rate, 50% increase in the rate of disappearance of pyruvate and an 80% decrease in the rate of disappearance of glutamate. 5. Investigation of the redox state of the cytochromes and the nicotinamide nucleotides in various conditions with either pyruvate or acetylcarnitine as substrates suggested that the specific stimulation of metabolism of pyruvate by K(+) could not be explained by a general stimulation of the electron-transport system. 6. Low-amplitude high-energy swelling of rat brain mitochondria was investigated in both Na(+)- and K(+)-containing media. Swelling of brain mitochondria was much greater in the Na(+)-containing medium and in this medium, the addition of Mg(2+) caused a partial reversal of swelling together with an 85% decrease in the rate of utilization of pyruvate. However, in the K(+)-containing medium, the addition of Mg(2+), although also causing a reversal of swelling, did not affect the rate of disappearance of pyruvate. 7. Measurements of the ATP, NADH/NAD(+) and acetyl-CoA/CoA contents were made under various conditions and no evidence that K(+) concentrations affected these parameters was obtained. 8. The results are discussed in relationship to the physiological significance of the stimulation of pyruvate metabolism by K(+) in rat brain mitochondria. It is proposed that K(+) causes its effects by a direct stimulation of the pyruvate dehydrogenase complex.  相似文献   

7.
We have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF(3)(-). Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg(2+) ion in the active site. Coupled with a strong [Mg(2+)] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg(2+) ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg(2+) concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg(2+) ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated γ-phosphate from solvent.  相似文献   

8.
1. Pig heart pyruvate dehydrogenase complex is inactivated by phosphorylation (MgATP2-) of an alpha-chain of the decarboxylase component. Three serine residues may be phosphorylated, one of which (site 1) is the major inactivating site. 2. The relative rates of phosphorylation are site 1 greater than 2 greater than site 3. 3. The kinetics of the inactivating phosphorylation were investigated by measuring inactivation of the complex with MgATP2-. The apparent Km for the Mg complex of ATP was 25.5 microM; ADP was a competitive inhibitor (Ki 69.8 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 2.8 microM). Inactivation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA. 4. The kinetics of additional phosphorylations (predominantly site 2 under these conditions) were investigated by measurement of 32P incorporation into non-radioactive pyruvate dehydrogenase phosphate containing 3-6% of active complex, and assumed from parrallel experiments with 32P labelling to contain 91% of protein-bound phosphate in site 1 and 9% in site 2. 5. The apparent Km for the Mg complex of ATP was 10.1 microM; ADP was a competitive inhibitor (Ki 31.5 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 1.1 mM). 6. Incorporation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA, although it was less marked at the highest ratios.  相似文献   

9.
R K Gupta  R M Oesterling 《Biochemistry》1976,15(13):2881-2887
Rabbit muscle pyruvate kinase requires two divalent cations per active site for catalysis of the enolization of pyruvate in the presence of adenosine 5'-triphosphate (ATP). One divalent cation is bound directly to the enzyme and forms a second sphere complex with the bound ATP (site 1). The second divalent cation is directly coordinated to the phosphoryl groups of ATP and does not interact with the enzyme (site 2). The essential role of the divalent cation at site 1 is shown by the requirement for Mg2+ or Mn2+ for the enolization of pyruvate in the presence of the substitution inert Cr3+-ATP complex. The rate of detritiation of pyruvate shows a hyperbolic dependence of Mn2+ concentration in the presence of high concentrations of enzyme and Cr3+-ATP. A dissociation constant for Mn2+ from the pyruvate kinase-Mn2+-ATP-Cr3+-pyruvate complex of 1.3 +/- 0.5 muM is determined by the kinetics of detritiation of pyruvate and by parallel Mn2+ binding studies using electron paramagnetic resonance. The essential role of the divalent cation at site 2 is shown by the sigmoidal dependence of the rate of detritiation of pyruvate on Mn2+ concentration in the presence of high concentrations of enzyme and ATP yielding a dissociation constant of 29 +/- 9 muM for Mn2+ from site 2. This value is similar to the dissociation constant of the binary Mn-ATP complex (14 +/- 6 muM) determined under similar conditions. The rate of detritiation of pyruvate is proportional to the concentration of the pyruvate kinase-Mn2+-ATP-Mn2+-pyruvate complex, as determined by parellel kinetic and binding studies. Variation of the nature of the divalent cation at site 1 in the presence of CrATP causes only a twofold change in the rate of detritiation of pyruvate which does not correlate with the pKa of the metal-bound water. Variation of the nature of the divalent cation at both sites in the presence of ATP causes a sevenfold variation in the rate of detritiation or pyruvate that correlates with the pKa of the metal-bound water. The greater rate of enolization observed with CrATP fits this correlation, indicating that the electrophilicity of the nucleotide bound metal (at site 2) determines the rate of enolization of pyruvate.  相似文献   

10.
An investigation was made of the interaction of pyruvate carboxylase with its allosteric effector, acetyl-CoA, and the velocity profile of the deacylation of acetyl-CoA as a function of acetyl-CoA concentration indicated that this ligand does not bind to this enzyme in a positive homotropic co-operative manner. An examination was therefore made of the factors that contribute to the sigmoidicity of the rate curves obtained for pyruvate carboxylation with various concentrations of acetyl-CoA. Hill coefficients for acetyl-CoA obtained with both sheep and chicken liver pyruvate carboxylases were found to be dependent on the fixed pyruvate concentration used in the assay solution. Thus, by varying the acetyl-CoA concentration, the degree of saturation of the enzyme by pyruvate was also changed. A further consequence of non-saturating concentrations of pyruvate was that the non-productive hydrolysis of the enzyme- carboxybiotin complex increased, resulting in an under-estimate of the reaction velocity measured by oxaloacetate formation. Another factor contributing to the sigmoidicity is that, at non-saturating concentrations of acetyl-CoA, the enzyme undergoes inactivation upon dilution to low protein concentrations, again resulting in an under-estimate of the reaction velocity. Under conditions where none of the above factors was operating and the only effect of varying acetyl-CoA concentrations was to alter the proportion of the enzyme catalysing the carboxylation reaction at acetyl-CoA-dependent and -independent rates, the sigmoidicity of the acetyl-CoA velocity profile was completely eliminated.  相似文献   

11.
The dependence of pyruvate kinase reaction rate on the concentration of one of the ligands--ADP or MgCl2--at constant concentrations of the other ligand was studied. The enzyme activity vs ligand concentration curves have fairly symmetrical peaks which correspond to the range of approximately equal ligand concentrations. The S-shaped dependence is observed only over the range of concentrations close to the dissociation constant for the Mg-ADP- complex (0.7 mM) under the given experimental conditions. The data obtained are consistent with the results of the first model kinetics within the framework of the London-Steck theory. The substrate for pyruvate kinase is the Mg-ADP- complex, while free Mg2+ and ADP3- competitively inhibit the enzyme. The inhibition constants are equal to 44 and 1 mM, respectively. The inhibiting effects of the metal and dinucleotide may be due to the competition with the substrate for the enzyme active site. Taking into consideration the fact that the binding of one of the ligands to the enzyme depends on the presence of the other ligand, a conclusion is drawn that Mg2+ forms a bridge with ADP3- and pyruvate kinase from adrenal cortex.  相似文献   

12.
O'Reilly M  Watson KA  Johnson LN 《Biochemistry》1999,38(17):5337-5345
Acarbose is a naturally occurring pseudo-tetrasaccharide. It has been used in conjunction with other drugs in the treatment of diabetes where it acts as an inhibitor of intestinal glucosidases. To probe the interactions of acarbose with other carbohydrate recognition enzymes, the crystal structure of E. coli maltodextrin phosphorylase (MalP) complexed with acarbose has been determined at 2.95 A resolution and refined to crystallographic R-values of R (Rfree) = 0.241 (0.293), respectively. Acarbose adopts a conformation that is close to its major minimum free energy conformation in the MalP-acarbose structure. The acarviosine moiety of acarbose occupies sub-sites +1 and +2 and the disaccharide sub-sites +3 and +4. (The site of phosphorolysis is between sub-sites -1 and +1.) This is the first identification of sub-sites +3 and +4 of MalP. Interactions of the glucosyl residues in sub-sites +2 and +4 are dominated by carbohydrate stacking interactions with tyrosine residues. These tyrosines (Tyr280 and Tyr613, respectively, in the rabbit muscle phosphorylase numbering scheme) are conserved in all species of phosphorylase. A glycerol molecule from the cryoprotectant occupies sub-site -1. The identification of four oligosaccharide sub-sites, that extend from the interior of the phosphorylase close to the catalytic site to the exterior surface of MalP, provides a structural rationalization of the substrate selectivity of MalP for a pentasaccharide substrate. Crystallographic binding studies of acarbose with amylases, glucoamylases, and glycosyltranferases and NMR studies of acarbose in solution have shown that acarbose can adopt two different conformations. This flexibility allows acarbose to target a number of different enzymes. The two alternative conformations of acarbose when bound to different carbohydrate enzymes are discussed.  相似文献   

13.
The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.  相似文献   

14.
The biotin-containing oxaloacetate decarboxylase from Klebsiella aerogenes catalyzed the Na+-dependent decarboxylation of oxaloacetate to pyruvate and bicarbonate (or CO2) but not the reversal of this reaction, not even in the presence of an oxaloacetate trapping system. The enzyme catalyzed an avidin-sensitive isotopic exchange between [1-14C]pyruvate and oxaloacetate, which indicated the intermediate formation of a carboxybiotin enzyme. Sodium ions were not required for this partial reaction, but promoted the second partial reaction, the decarboxylation of the carboxybiotin enzyme, thus accounting for the Na+ requirement of the overall reaction. Therefore, the 14CO2-enzyme which was formed upon incubation of the decarboxylase with [4-15C]oxaloacetate, could only be isolated if Na+ ions were excluded. Preincubation of the decarboxylase with avidin also prevented its labelling with 14CO2. The isolated 14CO2-labelled oxaloacetate decarboxylase revealed the following properties. It was slowly decarboxylated at neutral pH and rapidly upon acidification. The 14CO2 residues of the 14CO2-enzyme could be transferred to pyruvate yielding [4-14C]oxaloacetate. In the presence of Na+ this 14CO2 transfer was repressed by the simultaneous decarboxylation of the 14CO2-enzyme. However, Na+ alone was insufficient as a cofactor for the decarboxylation of the isolated 14CO2-enzyme, since this required pyruvate in addition to Na+. It is therefore concluded that the decarboxylation of oxaloacetate proceeds over a CO2-enzyme--pyruvate complex and that free CO2-enzyme is an abortive reaction intermediate. The activation energy of the enzymic decarboxylation of oxaloacetate changed with temperature and was about 113 kJ below 11 degrees C, 60 kJ between 11 degrees C and 31 degrees C and 36 kJ between 31--45 degrees C.  相似文献   

15.
The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.  相似文献   

16.
At the junction of glycolysis and the Krebs cycle in cellular metabolism, the pyruvate dehydrogenase multienzyme complex (PDHc) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. In mammals, PDHc is tightly regulated by phosphorylation-dephosphorylation of three serine residues in the thiamin-dependent pyruvate dehydrogenase (E1) component. In vivo, inactivation of human PDHc correlates mostly with phosphorylation of serine 264, which is located at the entrance of the substrate channel leading to the active site of E1. Despite intense investigations, the molecular mechanism of this inactivation has remained enigmatic. Here, a detailed analysis of microscopic steps of catalysis in human wild-type PDHc-E1 and pseudophosphorylation variant Ser264Glu elucidates how phosphorylation of Ser264 affects catalysis. Whereas the intrinsic reactivity of the active site in catalysis of pyruvate decarboxylation remains nearly unaltered, the preceding binding of substrate to the enzyme's active site via the substrate channel and the subsequent reductive acetylation of the E2 component are severely slowed in the phosphorylation variant. The structure of pseudophosphorylation variant Ser264Glu determined by X-ray crystallography reveals no differences in the three-dimensional architecture of the phosphorylation loop or of the active site, when compared to those of the wild-type enzyme. However, the channel leading to the active site is partially obstructed by the side chain of residue 264 in the variant. By analogy, a similar obstruction of the substrate channel can be anticipated to result from a phosphorylation of Ser264. The kinetic and thermodynamic results in conjunction with the structure of Ser264Glu suggest that phosphorylation blocks access to the active site by imposing a steric and electrostatic barrier for substrate binding and active site coupling with the E2 component. As a Ser264Gln variant, which carries no charge at position 264, is also selectively deficient in pyruvate binding and reductive acetylation of E2, we conclude that mostly steric effects account for inhibition of PDHc by phosphorylation.  相似文献   

17.
N Papadakis  G G Hammes 《Biochemistry》1977,16(9):1890-1896
One sulfhydryl group per polypeptide chain of the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was selectively labeled with N-[P-(2-benzoxazoyl)phenyl]-maleimide (NBM), 4-dimethylamino-4-magnitude of-maleimidostilbene (NSM), and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) in 0.05 M potassium phosphate (pH 7). Modification of the sulfhydryl group did not alter the enzymatic activity or the binding of 8-anilino-1-naphthalenesulfonate (ANS) or thiochrome diphosphate to the enzyme. The fluorescence of the NBM or NSM coupled to the sulfhydryl group on the enzyme was quenched by binding to the enzyme of the substrate pyruvate the coenzyme thiamine diphosphate, the coenzyme analogue thiochrome diphosphate, the regulatory ligands acetyl-CoA, GTP, and phosphoenolpyruvate, and the acetyl-CoA analogue, ANS. Fluorescence energy transfer measurements were carried out for the enzyme-bound donor-acceptor pairs NBM-ANS, NBM-thiochrome diphosphate ANS-DDPM, and thiochrome diphosphate-DDM. The results indicate that the modified sulfhydryl group is more than 40 A from the active site and approximately 49 A from the acetyl-CoA regulatory site. Thus, a conformational change must accompany the binding of ligands to the regulatory and catalytic sites. Anisotropy depolarization measurements with ANS bound on the isolated pyruvate dehydrogenase in 0.05 M potassium phosphate (pH 7.0) suggest that under these conditions the enzyme is dimeric.  相似文献   

18.
Malate dehydrogenase specifically oxidizes malate to oxaloacetate. The specificity arises from three arginines in the active site pocket that coordinate the carboxyl groups of the substrate and stabilize the newly forming hydroxyl/keto group during catalysis. Here, the role of Arg-153 in distinguishing substrate specificity is examined by the mutant R153C. The x-ray structure of the NAD binary complex at 2.1 A reveals two sulfate ions bound in the closed form of the active site. The sulfate that occupies the substrate binding site has been translated approximately 2 A toward the opening of the active site cavity. Its new location suggests that the low catalytic turnover observed in the R153C mutant may be due to misalignment of the hydroxyl or ketone group of the substrate with the appropriate catalytic residues. In the NAD.pyruvate ternary complex, the monocarboxylic inhibitor is bound in the open conformation of the active site. The pyruvate is coordinated not by the active site arginines, but through weak hydrogen bonds to the amide backbone. Energy minimized molecular models of unnatural analogues of R153C (Wright, S. K., and Viola, R. E. (2001) J. Biol. Chem. 276, 31151-31155) reveal that the regenerated amino and amido side chains can form favorable hydrogen-bonding interactions with the substrate, although a return to native enzymatic activity is not observed. The low activity of the modified R153C enzymes suggests that precise positioning of the guanidino side chain is essential for optimal orientation of the substrate.  相似文献   

19.
The cytochrome P450 catalyzes hydroxylation of many substrates in the presence of O(2) and specific electron transport system. The ternary complex S-Fe(+)O(2) with substrate and O(2) bound to their respective sites on the reduced enzyme is an important intermediate in the formation of the hydroxylating species. Then the active site may be considered as having two sub-sites geared for entirely different types of functionally relevant interactions. The two sites are the substrate binding site, the specific protein residues (Site I), and the L(6) position of the iron (Site II) to which O(2) binds upon reduction. In the ferric enzyme, when substrate binds to Site I, the low spin six-coordinated P450 is converted to the readily reducible high spin five coordinated state. Certain amines and OH compounds, such as products of P450-catalyzed reactions, can bind to Site II resulting in six coordinated inhibited complexes. Then the substrate and product interactions with the two sub-sites can regulate the functional state of the enzyme during catalysis. Product interactions have received very little attention. CYP101 is the only P450 in which X-ray and spectroscopic data on all three structures, the substrate-free, camphor-bound and the 5-exo-OHcamphor-bound are available. The substrate-free CYP101 is low spin and six-coordinated with a water molecule ligated at the L(6) position of the iron. The substrate camphor binds to Site I, and releases the L(6) water despite its inability to bind to this site, indicating that Site I binding can inhibit Site II ligation. The product 5-exo-OHcamphor in addition to binding to Site I, binds to Site II through its -OH group forming Fe-O bond, resulting in the low spin six-coordinated complex. New temperature-jump relaxation kinetic data indicating that Site II ligation inhibits Site I binding are presented. It appears that the Site I and Site II function as interacting sub-sites. The inhibitory allosteric interactions between the two sub-sites are also reflected in the data on binding of the substrate camphor (S) in the presence of the product 5-exo-OH camphor (P) to CYP101 (E). The data are in accordance with the two-site model involving the ternary complex ESP. The affinity of the substrate to the product-bound enzyme as well as the affinity of the product to the substrate-bound enzyme decreased with increase in product concentration, which is consistent with mixed inhibition indicative of inhibitory allosteric interactions between the two sub-sites. Implications of these observations for coupling/uncoupling mechanisms are discussed in the light of the published findings consistent with the two-site behavior of the P450 active site. In addition, kinetic data indicating that the transient high spin intermediate may have to be taken into account for understanding how some P450s have been able to express appreciable hydroxylation activities in the absence of substrate-induced low to high spin transition, observable by the traditional static spectroscopy, are presented.  相似文献   

20.
Recent kinetic and structural studies on various thiamin-dependent enzymes, including the bacterial E1 component of the pyruvate dehydrogenase complex (PDHc), suggested an active center communication between the cofactors in these multimeric enzymes. This regulatory mode has been inferred from the dissymmetry of active sites in proteolytic patterns and X-ray structures and from a complex macroscopic kinetic behavior not being consistent with independently working active sites. Here, direct microscopic kinetic evidence for this hypothesis is presented for the alpha2beta2-type E1 component of the human pyruvate dehydrogenase complex. Only one of the two thiamin molecules bound to the two active sites is in a chemically activated state exhibiting an apparent C2 ionization rate constant of approximately 50 s(-1) at pH 7.6 and 30 degrees C, whereas the thiamin in the "inactive site" ionizes with a rate that is at least 3 orders of magnitude smaller. The chemical nonequivalence is also exhibited in the ability to bind the substrate analogue methyl acetylphosphonate and in the catalytic turnover of the substrate pyruvate in the E1-only reaction. In the activated active site, pyruvate is rapidly bound and decarboxylated with apparent forward rate constants of covalent pyruvate binding of 2 s(-1) and decarboxylation of the formed 2-lactyl-thiamin intermediate of 5 s(-1). In the dormant site, these steps are as slow as 0.03 s(-1). Under the conditions that were used, only the heterotetramer can be detected by analytical ultracentrifugation, thus ruling out the possibility that multiple oligomeric species with different reactivities cause the observed kinetic effects. The results are consistent with the recently suggested model of an active site synchronization in PDHc-E1 via a proton wire that keeps the two active sites in an alternating activation state [Frank, R. A., et al. (2004) Science 306, 872]. Kinetic studies on the related thiamin enzymes transketolase, pyruvate oxidase, and bacterial pyruvate decarboxylase are not consistent with a chemical and/or functional nonequivalence of the active sites as observed in the E1 component of hsPDHc. We hypothesize that the alternating sites reaction in PDHc-E1 aids in the synchronized acyl transfer to the E2 component in the highly organized multienzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号