首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen equilibrium studies of purified hemoglobin Saint Mandé (Hb SM) [beta 102 (G4) Asn----Tyr] reveal a decreased oxygen affinity and cooperativity but to a lesser extent than found for Hb Kansas (beta 102 Thr). The low affinity of Hb SM depends on environmental conditions: eliminating chloride or raising the pH greatly elevated the ratio of p50 of Hb SM to that of Hb A. The alkaline Bohr effect is reduced by about 40%. The effects of anions (chloride, organophosphates) binding to deoxy Hb SM are also reduced. These data indicate that the functional properties of Hb SM are intermediary between Hb A and Hb Kansas. In addition, molecular graphics modeling of Hb SM in the oxy and deoxy structures indicate the possibility of a new hydrogen bond in the T state between beta(1)102 Tyr and alpha(2)42 Tyr. Stabilisation of the T state in this manner is a plausible explanation for several of the effects observed.  相似文献   

2.
Recent crystallographic studies suggested that fully liganded human hemoglobin can adopt multiple quaternary conformations that include the two previously solved relaxed conformations, R and R2, whereas fully unliganded deoxyhemoglobin may adopt only one T (tense) quaternary conformation. An important unanswered question is whether R, R2, and other relaxed quaternary conformations represent different physiological states with different oxygen affinities. Here, we answer this question by showing the oxygen equilibrium curves of single crystals of human hemoglobin in the R and R2 state. In this study, we have used a naturally occurring mutant hemoglobin C (β6 Glu→Lys) to stabilize the R and R2 crystals. Additionally, we have refined the x-ray crystal structure of carbonmonoxyhemoglobin C, in the R and R2 state, to 1.4 and 1.8 Å resolution, respectively, to compare precisely the structures of both types of relaxed states. Despite the large quaternary structural difference between the R and R2 state, both crystals exhibit similar noncooperative oxygen equilibrium curves with a very high affinity for oxygen, comparable with the fourth oxygen equilibrium constant (K4) of human hemoglobin in solution. One small difference is that the R2 crystals have an oxygen affinity that is 2–3 times higher than that of the R crystals. These results demonstrate that the functional difference between the two typical relaxed quaternary conformations is small and physiologically less important, indicating that these relaxed conformations simply reflect a structural polymorphism of a high affinity relaxed state.  相似文献   

3.

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. There is a consensus that Aβ is a pathologic agent and that its toxic effects, which are at present incompletely understood, may occur through several potential mechanisms. Polyphenols are known to have wide-ranging properties with regard to health and for helping to prevent various diseases like neurodegenerative disorders. Thus inhibiting the formation of toxic Aβ assemblies is a reasonable hypothesis to prevent and perhaps treat AD

Methods

Solution NMR and molecular modeling were used to obtain more information about the interaction between the Aβ1–40 and the polyphenol ε-viniferin glucoside (EVG) and particularly the Aβ residues involved in the complex.

Results

The study demonstrates the formation of a complex between two EVG molecules and Aβ1–40 in peptide characteristic regions that could be in agreement with the inhibition of aggregation. Indeed, in previous studies, we reported that EVG strongly inhibited in vitro the fibril formation of the full length peptides Aβ1–40 and Aβ1–42, and had a strong protective effect against PC12 cell death induced by these peptides.

Conclusion

For the full length peptide Aβ1–40, the binding sites observed could explain the EVG inhibitory effect on fibrillization and thus prevent amyloidogenic neurotoxicity.

General significance

Even though this interaction might be important at the biological level to explain the protective effect of polyphenols in neurodegenerative diseases, caution is required when extrapolating this in vitro model to human physiology.  相似文献   

4.
A safe and efficient semi-synthetic narcotic nalbuphine (NAL) which was broadly applied in analgesic therapy has long been considered to eliminate from human body via phase II conjugation. However, up to the present, neither the complete metabolic pathways nor the identified metabolites of NAL have been clarified in documented reports. In this study, four novel metabolites were discovered by incubating NAL with human liver microsomes. These metabolites were later quantified in blood samples from human volunteers treated with NAL. An accurate and precise new method for simultaneously determining NAL and its metabolites was also established. Their chemical structures were elucidated on the basis of one- and two-dimensional NMR spectroscopic analyses including 1H–1H correlation spectroscopy, nuclear overhauser enhancement spectroscopy, heteronuclear single-quantum correlation, and heteronuclear multiple bond correlation, and further confirmed by mass spectrometry. The analytical method was validated and applied successfully to a pilot human study with ultra-high performance liquid chromatography–tandem mass spectrometry employed with positive ion electrospray ionization via multiple reaction monitoring mode. This is the first report on the qualitative and quantitative analysis of NAL coupled with its two hydroxylated (3′-hydroxynalbuphine and 4′-hydroxynalbuphine) and two conjugated metabolites (nalbuphine-3-β-d-glucuronide and nalbuphine-6-β-d-glucuronide). The present method offers a rapid and simple way of performing pharmacokinetic studies of NAL, and assists in elucidating its metabolic pathway in humans.  相似文献   

5.
Summary The hydrogen-deuterium exchange rates of the reduced and oxidized forms ofRhodobacter' capsulatus cytochrome c2 were studied by1H–15N homonuclear multiple quantum correlation spectroscopy. Minimal differences were observed for the N- and C-terminal helices on changing redox state suggesting that although these helices are structurally important they do not affect the relative stability of the two redox states and hence may not be important in determining the redox potential differences observed amongst the class I c-type cytochromes. However, significant differences were observed for other regions of the protein. For example, all slow exchanging protons of the helix spanning Phe82 to Asp87 are similarly affected on reduction indicating that the unfolding equilibrium of this helix is altered between the two redox states. Other regions are not as simple to interpret; however, the difference in NH exchange rates between the redox states for a number of residues including His17, Leu37, Arg43, Ala45, Gly46, Ile57, Val58, Leu60, Gly61 and Leu100 suggest that interactions affecting the causes of these differences may be important factors in determining redox potential.Abbreviations NMR nuclear magnetic resonance - HMQC homonuclear multiple quantum correlation - NOESY nuclear Overhauser effect spectroscopy  相似文献   

6.
Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.  相似文献   

7.
The reproductive cycle of Trophon geversianus (Pallas 1774) population from Golfo San José (Chubut, Argentina, 42°33′S, 64°33′W) was studied using histochemical methods and digital image analysis. For such purpose, ovary samples were taken monthly between July 2006 and August 2007 and stained with hematoxylin and eosin, Sudan black B (to identify lipids) or Schiff’s ninhydrin (to identify proteins). Four different gametogenic stages were described: oogonias, previtellogenic oocytes, early vitellogenic oocytes, and late vitellogenic oocytes. Two spawning events were registered; one between September and October 2006, and a second one between February and March 2007. Oocyte quality was determined by the changes in lipid and protein composition during gametogenesis. Through digital image analysis, a lipid and a protein indexes (LI and PI) were calculated. Significant differences were observed in LI over month sampled, contrarily to what PI showed. A significant and positive correlation was found between lipid and protein content and oocytes areas, indicating that these nutrients accumulate during the entire vitellogenesis. Also, when dividing the oocytes into two size groups, analysis indicates a positive correlation between LI and oocyte area for smaller area oocytes. This demonstrates that while proteins accumulate linearly throughout vitellogenesis process, lipids accumulate in two steps: first at a growing rate, secondly at constant rate. This information is essential to determine the nutritional requirements of brood stock individuals at hatcheries in this potential fishery resource that inhabits patagonian waters.  相似文献   

8.
This study was performed to analyze the metabolic fate of a high concentration (5 mM) of glutamine and glutamate in rat brain slices and the participation of these amino acids in the glutamine-glutamate cycle. For this, brain slices were incubated for 60 min with [3-13C]glutamine or [3-13C]glutamate. Tissue plus medium extracts were analyzed by enzymatic and 13C NMR measurements and fluxes through pathways of glutamine and glutamate metabolism were calculated. We demonstrate that both substrates were utilized and oxidized at high rates by rat brain slices and served as precursors of neurotransmitters, tricarboxylic acid (TCA) cycle intermediates and alanine. In order to determine the participation of glutamine synthetase in the appearance of new glutamine molecules with glutamine as substrate, brain slices were incubated with [3-13C]glutamine in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase. Our results indicate that 36.5% of the new glutamine appeared was glutamine synthetase-dependent and 63.5% was formed from endogenous substrates. Flux through glutamic acid decarboxylase was higher with glutamine than with glutamate as substrate whereas fluxes from α-ketoglutarate to glutamate and through glutamine synthetase, malic enzyme, pyruvate dehydrogenase, pyruvate carboxylase and citrate synthase were in the same range with both substrates.  相似文献   

9.
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins.  相似文献   

10.
A highly sensitive, specific and evaporation free SPE extraction, LC–MS/MS method has been developed for the estimation of trospium in human plasma using trospium-d8 as an internal standard (IS). The analyte was separated using isocratic mobile phase on reverse phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+] cations, m/z 392–164 for trospium and m/z 400–172 for the IS. The total run time was 3.50 min and the elution of trospium and trospium-d8 (IS) occurred at 2.8 min. The developed method was validated in human plasma with a lower limit of quantification of 0.05 ng/mL. A linear response function was established for the range of concentrations 0.05–10 ng/mL (r > 0.998) for trospium in human plasma. The intra- and inter-day precision values for trospium met the acceptance as per FDA guidelines. Trospium was stable in the battery of stability studies viz., bench-top, auto-sampler, dry extracts and freeze/thaw cycles. The developed assay method was applied to an oral pharmacokinetic study in humans.  相似文献   

11.
According to the structural characteristics of isoliquiritigenin from Glycyrrhiza uralensis, a series of hydroxychalcones has been designed, synthesized and evaluated for their in vitro inhibitory activities of β-secretase (BACE1). Structure-activity relationship study suggested that inhibitory activity against BACE1 was governed to a greater extent by the hydroxyl substituent on A- and B-ring of the chalcone, and the most active compound was substituted with four hydroxyl group (17, IC50?=?0.27 μM).  相似文献   

12.
According to the structural characteristics of isoliquiritigenin from Glycyrrhiza uralensis, a series of hydroxychalcones has been designed, synthesized and evaluated for their in vitro inhibitory activities of β-secretase (BACE1). Structure-activity relationship study suggested that inhibitory activity against BACE1 was governed to a greater extent by the hydroxyl substituent on A- and B-ring of the chalcone, and the most active compound was substituted with four hydroxyl group (17, IC(50)?=?0.27 μM).  相似文献   

13.

The title compound, C6H4N4S2·C3H7NO, crystallizes in the monoclinic space group C 2/c with a = 26.673(5), b = 5.397(1), c = 16.522(3) Å, β = 95.49(3)°, Z = 8, R = 0.0461 for 1891 reflections with I > 2σ(I) and 174 parameters (4 restraints). Single pteridine-2,4(1 H,3 H)-dithione and dimethylformamide molecules are packed via N-H···O and N-H···N hydrogen bonds into centrosymmetric clusters containing two molecules of each class; these are roughly planar and placed into two different sets of planes -both containing the [−1,0,2] direction- mutually angled by 77.8°. Despite the distance between two neighbor planes in each set is ca. 3.4 Å, the analysis of π,π-stacking interactions shows too large slippage distance between aromatic rings from contiguous planes. Additional σ-π interactions between S2, S4 and O1S atoms and pyrazine or pyrimidine rings from adjacent molecules are present. The structure for the cluster [DTLM-DMF]2 has been simulated by using the density functionals B1B95 (6-31 G(d) and 6-31+G(d) basis sets) and M06-2X (6-31 G(d) basis set). As a result, the M06-2X/6-31 G(d) approach provides the best agreement with the experimental XRD data. For a better evaluation of the intermolecular interactions, the superposition of two dimeric adducts [DTLM-DMF]2 has been modelized. The binding capability of DTLM ligand was simulated on systems containing two metal-binding modes to palladium (N5-S4 and N1-S2) with different chelate size. The analysis of the frontier orbitals points out that the link with the metallic centers will take place through the sulfur atoms.

  相似文献   

14.
Carbapenems are used to control the outbreak of β-lactamases expressing bacteria. The effectiveness of drugs is influenced by its interaction with human serum albumin (HSA). Strong binding of carbapenems to HSA may lead to decreased bioavailability of the drug. The non-optimal drug dosage will provide a positive selection pressure on bacteria to develop resistance. Here, we investigated the interaction between meropenem and HSA at physiological pH 7.5 (N-isoform HSA) and non-physiological pH 9.2 (B-isoform HSA). Results showed that meropenem quenches the fluorescence of both ‘N’ and ‘B’ isoforms of HSA (ΔG < 0 and binding constant ~104 M?1). Electrostatic interactions and van der Waal interactions along with H-bonds stabilized the complex of meropenem with ‘N’ and ‘B’ isoforms of HSA, respectively. Molecular docking results revealed that meropenem binds to HSA near Sudlow’s site II (subdomain IIIA) close to Trp-214 with a contribution of a few residues of subdomain IIA. CD spectroscopy showed a change in the conformation of both the isoforms of HSA upon meropenem binding. The catalytic efficiency of HSA (only N-isoform) on p-nitrophenyl acetate was increased primarily due to a decrease in Km and an increase in kcat values. This study provides an insight into the molecular basis of interaction between meropenem and HSA.  相似文献   

15.
This computational study is intended to shed light on the crystalline and molecular structure, together with the hydrogen bonding (H-bonding) differences between two forms of native cellulose. DFT calculations were carried out to characterize the 17O, 1H and 13C nuclear magnetic resonance (NMR) parameters in cellulose Iα and Iβ with the B3LYP functional employing the 6–311++G7 and 6–31+G1 basis sets. Geometry optimization revealed that the average HB length is shortened by 0.01–0.08 Å when the chains are aligned, whereas the average bond angle increases by about 4–8° exhibiting the enhancement of HB strength. For the isolated cellotetramer chains, the isotropic 17O–H chemical shifts were plotted as a function of HB length. Our results indicated that as the HB length in cellotetramer Iα increases, the 17O–H chemical shift isotropy increases, but this parameter changes in the opposite direction for the other structure. Moreover, B3LYP/6–311++G7 calculations reveal that there is an acceptable correlation between the calculated 13C chemical shifts of the two structures and their experimental values.  相似文献   

16.
15N-15N scalar coupling constants across base pair hydrogen bonds (2hJ(NN)) were studied using residue- and atom-specifically 15N labeled DNA oligomers. The N3 atom selectively 15N enriched 2'-deoxycytidine and thymidine, and the uniformly 15N enriched 2'-deoxyadenosine and 2'-deoxyguanosine, were chemically prepared and incorporated into two DNA oligomers, d(CGCGAATTCGCG)2 and d(CGCAAAAAGCG).d(CGCTTTTTGCG). This isotope labeling enabled us to determine the 2hJ(NN) value from the splitting of the 15N 1D spectrum. Additionally, it enabled the determination of 2hJ(NN) in D2O quite easily and highly quantitatively. The temperature and DNA sequence dependence were examined for these oligomers. The sequence dependence was not clear; however, a significant decrease of 2hJ(NN) was observed by elevating the temperature. This temperature dependence was not due to the hydrogen exchange, since the addition of 20 mM NH3 did not change the 2hJ(NN) values. The 2hJ(NN) values in D2O were somewhat smaller than those in H2O. As compared to our 15N 1D method, the quantitative HNN-COSY method gave systematically smaller 2hJ(NN) values in our system, due to the lower 15N fraction of our sample (79 and 88% for dA and the other nucleotides, respectively) and the insufficient power of the 15N RF pulse (B1 = 6.6 kHz). These systematic differences were recovered by theoretical correction of the 15N isotope fraction contribution, by using the composite 15N 180 degrees pulse in a quantitative HNN-COSY experiment.  相似文献   

17.
Chen M  Drury JE  Penning TM 《Steroids》2011,76(5):484-490
Human steroid 5β-reductase (aldo-keto reductase 1D1) catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of Δ4-ketosteroids to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. The biochemical properties of the enzyme have not been thoroughly studied and conflicting data have been reported, partially due to the lack of highly homogeneous protein. In the present study, we systematically determined the substrate specificity of homogeneous human recombinant AKR1D1 using C18, C19, C21, and C27 Δ4-ketosteroids and assessed the pH-rate dependence of the enzyme. Our results show that AKR1D1 proficiently reduced all the steroids tested at physiological pH, indicating AKR1D1 is the only enzyme necessary for all the 5β-steroid metabolites present in humans. Substrate inhibition was observed with C18 to C21 steroids provided that the C11 position was unsubstituted. This structure activity relationship can be explained by the existence of a small alternative substrate binding pocket revealed by the AKR1D1 crystal structure. Non-steroidal anti-inflammatory drugs which are potent inhibitors of the related AKR1C enzymes do not inhibit AKR1D1. By contrast chenodeoxycholate and ursodeoxycholate were found to be potent non-competitive inhibitors suggesting that bile-acids may regulate their own synthesis at the level of AKR1D1 inhibition.  相似文献   

18.
Abstract

The conformation of deoxyribosides derived from N1 and N3 substitution of the aglycone ethyl 5-aminoimidazole-4-carboxylate (AICE) has been determined by 1H and 13C NMR spectroscopy. The deoxyribose ring shows considerable variation in the form and population of the contributing N and S conformers but the syn/anti ratio is similar to that in the purine analogues.  相似文献   

19.
Development of extracellular plaques characteristic of Alzheimer's disease is related to aggregation of amyloid peptides. The Aβ-42 peptide is the most aggregation prone species, and some missense mutant forms increase this aggregation ability. Due to its poor solubility as monomer in aqueous solutions, Aβ-42 conformational transitions in water have been largely investigated by molecular dynamics. Here we report an all-atom molecular dynamics analysis of the Aβ-42 peptide in aqueous environment using as starting conformation a structure obtained in an isotropic, low-polarity medium, representing a plausible model for the membrane-bound species. While previous studies commonly show that Aβ-42 is largely unstructured in aqueous solution, here we report that this peptide can adopt partially folded structures. Importance of ionic strength has been also investigated, showing that at physiological ionic strength condition a loop stabilizing electrostatic interaction involving Lys28 builds up. In addition, besides stable α-helix structures, we observe the appearance of 310 helix, similar to what was reported experimentally for the Aβ-40 species. The effect of E22Q (Dutch) mutation in high ionic strength condition has been explored. We show that this mutation has a dramatic impact on the Aβ-42 structure. Instead of a partially folded, but extended, conformation obtained with the wild type, the E22Q assumes a two-helix collapsed one due to the clustering of hydrophobic residues.  相似文献   

20.

Background

Synchronized electroencephalogram (EEG) activity is observed in pathological stages of cognitive impairment and epilepsy. Modafinil, known to increase the release of catecholamines, is a potent wake-promoting agent, and has shown some abilities to desynchronize EEG,but its receptor mechanisms by which modafinil induces desynchoronization remain to be elucidated. Here we used a pharmacological EEG synchronization model to investigate the involvement of adrenergic α1 receptors (R, α1R) and dopamine (DA) D1 and D2 receptors (D1Rs and D2Rs) on modafinil-induced desynchronization in mice.

Methodology/Principal Findings

Mice were treated with cholinergic receptor antagonist scopolamine and monoamine depletor reserpine to produce experimental EEG synchronization characterized by continuous large-amplitude synchronized activity, with prominent increased delta and decreased theta, alpha, and beta power density. The results showed that modafinil produced an EEG desynchronization in the model. This was characterized by a general decrease in amplitude of all the frequency bands between 0 and 20 Hz, a prominent reduction in delta power density, and an increase in theta power density. Adrenergic α1R antagonist terazosin (1 mg/kg, i.p.) completely antagonized the EEG desynchronization effects of modafinil at 90 mg/kg. However, DA D1R and D2R blockers partially attenuated the effects of modafinil. The modafinil-induced decrease in the amplitudes of the delta, theta, alpha, and beta waves and in delta power density were completely abolished by pretreatment with a combination of the D1R antagonist SCH 23390 (30 µg/kg) and the D2R antagonist raclopride (2 mg/kg, i.p.).

Conclusions/Significance

These results suggest that modafinil-mediated desynchronization may be attributed to the activation of adrenergic α1R, and dopaminergic D1R and D2R in a model of EEG synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号