首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Rat cells transformed by the B77 strain of avian sarcoma virus produce no virus-like particles, yet B77 virus was rescued from these cells by Sendai virus-mediated fusion with chicken cells. This virus rescue was not affected by treatment of the chicken cells with agents that rendered the cells incapable of dividing, although such treatment greatly reduced the ability of the chicken cells to plate as infectious centers after infection with B77 virus. Fusion of R(B77) cells with chicken erythrocytes also led to virus rescue, although with less efficiency than fusion with chicken fibroblasts. Therefore, virus rescue was probably due to a factor or factors contributed by chicken cells which aid in virus production.  相似文献   

2.
Virus-specific antigens were studied in hamster cells transformed by Rous sarcoma virus (RSV). Antigens were localized in the cytoplasm, as demonstrated by fluorescent antibody staining of fixed cells as well as by complement fixation (CF) following subcellular fractionation. Cytoplasmic extracts were analyzed by velocity and isopycnic centrifugation. CF antigens were found in a soluble form and in association with membranes and polyribosomes. Isolated plasma membranes had no CF antigen. Both soluble and particulate fractions with CF activity contained the same antigenic determinants by Ouchterlony analysis. These antigenic determinants were identical to those released by ether treatment of RSV.  相似文献   

3.
4.
The size and quantity of virus-specific RNA in five non-virus-producing mouse cells transformed by the Moloney isolate of murine sarcoma virus (MSV) was determined. Hybridization of RNA from transformed cells with the [(3)H]DNA product of the RNA-directed DNA polymerase of the murine sarcoma-leukemia virus was used to detect and quantitate virus-specific RNA. The amount of virus-specific RNA in non-virus-producing cells was less than one-sixth of that found in virus-producing cells. A striking correlation was found between the amount of intracellular virus-specific RNA and the degree of agglutination by conconavalin A previously reported for the four non-virus-producing NIH/3T3 cell lines (Salzberg and Green, 1974). A major RNA subunit sedimenting at 26 to 28S was detected in all five MSV-transformed non-virus-producing cells. This could represent the RNA genome of defective MSV.  相似文献   

5.
The 8303 hamster tumor cells transformed by Moloney strain of murine sarcoma virus (M-MSV), but which do not produce virus, do contain murine virus-induced proteins. The virus-induced proteins within the cell were identified either as free proteins or in association with membranous material, including the plasma membrane. In addition, some were excreted by the 8303 hamster tumor cells into the growth medium. Most virus-induced proteins were larger than 68,000 daltons, and they did not dissociate into components of smaller size in the presence of detergent and a reducing agent. A small amount of virus-induced protein with a molecular weight of less than 20,000 was also found in the hamster tumor cells. No virus-specific proteins with the identical antigenic specificity or size of the major internal group specific antigen (molecular weight about 30,000) of the murine leukemia viruses were present in these cells. There is a common cell surface antigen present in three other tumor cell lines, both virus-producing and non-virus-producing, identical in reactivity to that of the murine virus-induced antigen of the 8303 hamster tumor cell. This antigen is not present on the cell surface of normal mouse embryo cells.  相似文献   

6.
Several methods have been explored for the detection and characterization of viral proteins from soluble extracts of cells transformed by Rous sarcoma virus (RSV). Viral antigens have been analyzed after gel filtration in several solvents. In addition, immune complexes formed with virus-specific sera have been isolated by agarose gel filtration and by high- or low-speed centrifugation through sucrose solutions. Radioactive proteins from these immune complexes have been analyzed by gel filtration in 6 m guanidine hydrochloride or by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Comparison with proteins from purified virus indicates the presence of two viral core proteins (gs1 and gs2) in the soluble fraction from virus-producing chicken cells. In the same fraction from RSV-transformed hamster cells (which do not produce virus), three gs proteins (gs1, gs2, and gs3) could be identified. The soluble viral gs proteins are strongly bound to at least two larger polypeptides in cell extracts. These polypeptides do not appear to be viral in origin and have the property of undergoing a time-dependent aggregation in the extracts. One of these cell-derived proteins, which is present in a variety of uninfected cell types, closely resembles actin.  相似文献   

7.
Phenotypic expression of the murine intraspecies and interspecies antigenic determinants of the major type C viral structural 30,000-dalton polypeptide, p30, was measured by radioimmunoassay inhibition in cell lines from different species. Uninfected normal rat kidney (NRK) cells did not contain detectable levels of murine intraspecies and interspecies p30 antigen, whereas rat cells transformed by and producing murine sarcoma virus (MSV)-Moloney leukemia virus (M-MSV-MuLV) contained high levels of both murine intraspecies and interspecies p30 antigen. Significant amounts of murine intraspecies and interspecies p30 antigen were detected in wild-type MSV-transformed nonproducer NRK cells. The control of p30 antigen expression was examined in temperature-sensitive MSV-transformed nonproducer cells [NRK(MSV-1b)] which are cold sensitive for maintenance of the transformed phenotype. Both murine intraspecies and interspecies p30 antigens were detected in NRK(MSV-1b) cells when grown at the permissive (39 C) or nonpermissive (33 C) temperature, suggesting that p30 antigen expression is not correlated with maintenance of the transformed phenotype. The results demonstrate that previously undetectable p30 antigens are expressed in MSV-transformed nonproducer NRK cells, and suggest that the expression of p30 antigen may be a useful marker for viral gene expression in mammalian cells.  相似文献   

8.
Labeled virions of Rous sarcoma virus (RSV) were disrupted with detergent and analyzed on equilibrium sucrose density gradients. A core fraction at a density of approximately 1.24 g/cc contained all of the (3)H-uridine label and about 30% of the (3)H-leucine label from the virions. Endogenous viral deoxyribonucleic acid (DNA) polymerase activity was only found in the same location. Additional ribonucleic acid (RNA)- and DNA-dependent DNA polymerase activities were found at the top of the gradients. RNA-dependent and DNA-dependent DNA polymerase activities were also found in RSV-converted chicken cells. Particles containing these activities were released from cells by detergent and were shown to contain viral RNA. These particles were analyzed on equilibrium sucrose density gradients and were found to have densities different from virion cores.  相似文献   

9.
Cell lines of four mammalian species were each examined for the number of Moloney murine sarcoma virus (M-MSV) DNA copies in total cellular DNA after M-MSV transformation. Sarcoma-positive, leukemia-negative (S+L-) M-MSV-transformed cells were compared to M-MSV-transformed cells infected with a replicating leukemia virus. Both unfractionated M-MSV complementary DNA and complementary DNA representing the MSV-specific and the MSV-murine leukemia virus-common regions of the M-MSV genome were hybridized to total cellular DNA of various species. DNAs of mouse, cat, dog, and human S+L-cells contained from less than one to a few proviral M-MSV DNA copies per haploid genome. In contrast, helper virus-coinfected, M-MSV-producing cells of each species showed a 3- to 10-fold increase in M-MSV proviral DNA over that found in corresponding S+L- cells. MSV-specific and MSV-murine leukemia virus-common nucleotide sequences were each increased to a similar degree. A corresponding examination of cellular DNA of leukemia virus-infected normal or S+L- mammalian cells was performed to establish the resulting number of leukemia proviral DNA copies. The infection of normal or S+L- mammalian cells with several leukemia-type viruses that did not have nucleotide sequences closely related to the cell before infection resulted in the appearance of one to three corresponding leukemia proviral DNA copies.  相似文献   

10.
Production and Purification of Large Amounts of Rous Sarcoma Virus   总被引:19,自引:3,他引:16       下载免费PDF全文
Procedures are described for production and purification of large amounts of Rous sarcoma virus. The virus was produced by Rous sarcoma virus-transformed chicken embryo fibroblasts in roller culture which produced up to 6 mg of virus per day per liter of supernatant fluid. Various methods of concentrating virus were evaluated; pelleting yielded the best results in terms of recovery of infectious virus. Purification was achieved by means of successive velocity and equilibrium density centrifugation by using sucrose solutions made in low-salt buffer. A rapid method for the optical density measurement of virus concentration was also developed.  相似文献   

11.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

12.
Rous sarcoma virus (RSV)-specific ribonucleic acid (RNA) in virus-producing chicken cells and non-virus-producing rat cells infected with RSV was studied by hybridization with the endogenous deoxyribonucleic acid (DNA) product of the RSV virion DNA polymerase system. By hybridizing the total DNA product with excess virion RNA, the product DNA was separated into hybridized (“minus”) and nonhybridized (“plus”) DNA. The “minus” DNA was complementary to at least 20% of the RNA from RSV which remained of high molecular weight after denaturation. A maximum of approximately 65% hybridization was observed between “minus” DNA and RSV RNA or RSV-infected chicken cell RNA. A maximum of about 60% hybridization was observed between “minus” DNA and RSV-infected rat cell RNA. RSV-infected chicken cells contained RSV-specific RNA equivalent to about 6,000 virions per cell. RSV-infected rat cells contained RSV-specific RNA equivalent to approximately 400 virions per cell. Neither cell type contained detectable RNA complementary to virion RNA. The RSV-specific RNA in RSV-infected rat cells did not appear to be qualitatively different from that in RSV-infected chicken cells.  相似文献   

13.
Rous sarcoma virus (RSV) and murine leukemia virus (MLV) are examples of distantly related retroviruses that normally do not encounter one another in nature. Their Gag proteins direct particle assembly at the plasma membrane but possess very little sequence similarity. As expected, coexpression of these two Gag proteins did not result in particles that contain both. However, when the N-terminal membrane-binding domain of each molecule was replaced with that of the Src oncoprotein, which is also targeted to the cytoplasmic face of the plasma membrane, efficient copackaging was observed in genetic complementation and coimmunoprecipitation assays. We hypothesize that the RSV and MLV Gag proteins normally use distinct locations on the plasma membrane for particle assembly but otherwise have assembly domains that are sufficiently similar in function (but not sequence) to allow heterologous interactions when these proteins are redirected to a common membrane location.  相似文献   

14.
Rat liver cells in vitro were transformed with chicken sarcoma virus B77, giving RL(B77) cells, and with murine sarcoma virus (Harvey), giving RL(MSV) cells. Rat liver cells transformed spontaneously in vitro were designated RL cells. In addition, the RL(MSV) cell line was adapted for growth in culture fluid containing 25 mug of 5-bromodeoxyuridine per ml. All cell lines were tumorigenic in 1-wk-old rats. The number of cells needed for induction of tumor growth was 1,000-fold higher in the case of RL(B77) cells in comparison with RL(MSV) cells and RL cells. No production of viral particles from any of the cell lines investigated was detected by plating concentrated supernatant fluid of the cultures on different secondary embryo cells with and without fusion by Sendai virus, by labeling with uridine-5-(3)H, or by assay for deoxyribonucleic acid polymerase activity. The viral genome was rescued by fusion of RL(B77) cells with chicken cells. Chicken sarcoma virus rescued from (RL(B77) cells differed in plating efficiency on duck cells from B77 virus rescued from transformed rat embryo cells. No virus was rescued after fusion of RL(MSV) and RL cells with mouse, rat, or chicken embryo cells. Infectious murine sarcoma virus can be induced by 5-bromodeoxyuridine from RL(MSV) cells.  相似文献   

15.
The cell culture lines HTG2 and HTG3 were established from a transplantable hamster tumor induced by a murine sarcoma virus (strain Gz-MSV) after 17 and 60 in vivo passages, respectively. The viruses released by these two cell lines markedly differ in morphology, antigenic composition, infectivity, transforming ability, and enzymatic activity. HTG2 virions contained the sarcoma genome but were noninfectious for mouse and hamster cells (S+H-virus). HTG3 virions transformed hamster but not mouse cells. Whereas HTG2 cells and its virus contained murine type C virus gs-1 antigen, all HTG3 clonal lines expressed both murine and hamster type C virus gs-1 antigens. The RNA-dependent DNA polymerase activity of HTG2 virus was very low, whereas that of HTG3 virus was relatively high. HTG2 virions contained electron-lucent centers only. HTG3 virus consisted of the expected mixture of virions with electron-dense and electron-lucent centers. Many broken or incomplete virions were present in both viruses. HTG2 virus is a noninfectious "defective" sarcoma virus without detectable helper virus. Data obtained in these experiments suggest that HTG3 virus is a hamster type C virus pseudotype of Gz-MSV (Gz-MSV [HaLV]). The genome of Gz-MSV is capable of antigenic expression in heterologous cells and in the presence of heterologous viruses. Attempts to chemically activate hamster type C virus (HaLV) from HTG2 cells were unsuccessful. The HTG1 cell culture line, established from another Gz-MSV-induced hamster tumor, initially released a virus indistinguishable from the HTG2 virus. After in vitro passage, spontaneous activation of HaLV occurred in HTG1 cells, and the resultant Gz-MSV (HaLV) had properties similar to those of the HTG3 virus.  相似文献   

16.
17.
Enhancement of tumor induction by oncornaviruses through a dual viral infection has been described by several investigators. The mechanism(s) of this enhancement has not as yet been determined. By using a murine sarcoma virus and a Bunyawera group arbovirus (Guaroa virus) in an in vitro system, evidence was obtained for enhancement of the oncogenic potential of the viruses by genetic interaction with the nononcogenic virus as well as the production of increased amounts of the oncogenic virus. These results confirm and extend similar responses obtained in in vivo systems.  相似文献   

18.
Chick embryo fibroblasts transformed by Rous sarcoma virus are agglutinated by wheat germ agglutinin and by concanavalin A if the cells are pretreated with purified hyaluronidase. Cells infected by a temperature-sensitive mutant of this virus are agglutinable if grown at the permissive temperature but not if grown at the non-permissive temperature.  相似文献   

19.
20.
Infectious Rous Sarcoma Virus and Reticuloendotheliosis Virus DNAs   总被引:41,自引:33,他引:8       下载免费PDF全文
An efficient and quantitative assay for infectious Rous sarcoma virus and reticuloendotheliosis virus DNAs is described. The specific infectivities of viral DNA corresponded to one infectious unit per 10(5) to 10(6) viral DNA molecules. Infection with viral DNA followed one-hit kinetics. The minimal size of infectious Rous sarcoma virus DNA was approximately 6 million daltons, whereas the minimal size of infectious reticuloendotheliosis virus DNA was larger, 10 to 20 million daltons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号