首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned, sequenced, and expressed the gene for a unique ATP- and NADPH-dependent carboxylic acid reductase (CAR) from a Nocardia species that reduces carboxylic acids to their corresponding aldehydes. Recombinant CAR containing an N-terminal histidine affinity tag had K(m) values for benzoate, ATP, and NADPH that were similar to those for natural CAR, and recombinant CAR reduced benzoic, vanillic, and ferulic acids to their corresponding aldehydes. car is the first example of a new gene family encoding oxidoreductases with remote acyl adenylation and reductase sites.  相似文献   

2.
Aldose reductase and aldehyde reductases have been purified to homogeneity from human kidney and have molecular weights of 32,000 and 40,000 and isoelectric pH 5.8 and 5.3, respectively. Aldose reductase, beside catalyzing the reduction of various aldehydes, reduces aldo-sugars, whereas aldehyde reductase, does not reduce aldo-sugars. Aldose reductase activity is expressed with either NADH or NADPH as cofactor, whereas aldehyde reductase utilizes only NADPH. Both enzymes are inhibited to varying degrees by aldose reductase inhibitors. Antibodies against bovine lens aldose reductase precipitated aldose reductase but not aldehyde reductase. The sequence of addition of the substrates to aldehyde reductase is ordered and to aldose reductase is random, whereas for both the enzymes the release of product is ordered with NADP released last.  相似文献   

3.
A mutant of Arabidopsis thaliana (L.) Heyn. (a small plant in the crucifer family) that lacks glycine decarboxylase activity owing to a recessive nuclear mutation has been isolated on the basis of a growth requirement for high concentrations of atmospheric CO2. Mitochondria isolated from leaves of the mutant did not exhibit glycine-dependent O2 consumption, did not release 14CO2 from [14C]glycine, and did not catalyse the glycine-bicarbonate exchange reaction that is considered to be the first partial reaction associated with glycine cleavage. Photosynthesis in the mutant was decreased after illumination under atmospheric conditions that promote partitioning of carbon into intermediates of the photorespiratory pathway, but was not impaired under non-photorespiratory conditions. Thus glycine decarboxylase activity is not required for any essential function unrelated to photorespiration. The photosynthetic response of the mutant in photorespiratory conditions is probably caused by an increased rate of glyoxylate oxidation, which results from the sequestering of all readily transferable amino groups in a metabolically inactive glycine pool, and by a depletion of intermediates from the photosynthesis cycle. The rate of release of 14CO2 from exogenously applied [14C]glycollate was 14-fold lower in the mutant than in the wild type, suggesting that glycine decarboxylation is the only significant source of photorespiratory CO2.  相似文献   

4.
1. Aldose reductase and aldehyde reductase were purified to homogeneity from human testis. 2. The molecular weight of aldose reductase and aldehyde reductase were estimated to be 36,000 and 38,000 by SDS-PAGE, and the pI values of these enzymes were found to be 5.9 and 5.1 by chromatofocusing, respectively. 3. Aldose reductase had activity for aldo-sugars, whereas aldehyde reductase was virtually inactive for aldo-sugars. The Km values of aldose reductase for D-glucose, D-galactose and D-xylose were 57, 49 and 6.2 mM, respectively. Aldose reductase utilized both NADPH and NADH as coenzymes, whereas aldehyde reductase only NADPH. 4. Sulfate ion caused 3-fold activation of aldose reductase, but little for that of aldehyde reductase. 5. Sodium valproate inhibited significantly aldehyde reductase, but not aldose reductase. Aldose reductase was inhibited strongly by aldose reductase inhibitors being in clinical trials at concentrations of the order of 10(-7)-10(-9) M. Aldehyde reductase was also inhibited by these inhibitors, but its susceptibility was less than aldose reductase. 6. Reaction of aldose reductase with pyridoxal 5'-phosphate (PLP) resulted ca 2.5-fold activation, but aldehyde reductase did not cause the activation. PLP-treated aldose reductase has lost the susceptibility to aldose reductase inhibitor.  相似文献   

5.
An NADPH-dependent aldehyde reductase was purified to homogeneity from Candida magnoliae AKU4643 through four steps, including Blue-Sepharose affinity chromatography. The relative molecular mass of the enzyme was estimated to be 33,000 on high performance gel-permeation chromatography and 35,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The substrate specificity of the enzyme was broad and resembled those of other aldo–keto reductases. The partial amino acid sequences of the enzyme showed that it belongs to the aldo–keto reductase superfamily. The enzyme catalyzed the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to the corresponding (R)-alcohol, with a 100% enantiomeric excess. The enzyme was inhibited by 1 mM quercetin, CuSO4, ZnSO4 and HgCl2. The thermostability of the enzyme was inferior to that of the (S)-CHBE-producing enzyme from the same strain.  相似文献   

6.
Abstract— The presence of a nonspecific NADH-linked aldehyde reductase was demonstrated in various regions of bovine brain in vitro. With m-nitrobenzaldehyde as substrate, the rate of NADH oxidation was approximately 4 nmol.min-1.(mg of protein)-1 in the cerebellum, pons and medulla; but somewhat lower rates [2–3 nmol.min-1.(mg of protein)-l] were obtained in the other areas of the brain examined. The enzyme was localized primarily in the soluble, supernatant fraction of rat brain homogenates. The enzyme from the supernatant fluid fraction of bovine brain was purified approximately 350-fold by ammonium sulphate fractionation and chromatography on calcium phosphate-gel, DEAE-cellulose and Sephadex G200 columns. The partially purified enzyme catalysed the reduction of a number of aldehydes, including substituted benzaldehydes and aliphatic aldehydes of intermediate chain lengths. Short chain aliphatic aldehydes, such as acetaldehyde, were not reduced by the enzyme and butyraldehyde was a poor substrate. With m-nitrobenzaldehyde as substrate, NADH was oxidized at an approximately 10-fold faster rate than NADPH. The pH optimum for the enzyme was 6.75 for aldehyde reduction, whereas the rate of oxidation of m-nitrobenzylalcohol was optimal at pH 10.0 with NAD as the co-substrate. Km and K3 values ranged from 10 μM to 10 mM for various aldehydes and from 10 to 30 μM for the cofactors. Oxidation of NADH by the partially purified enzyme was not inhibited by 10m pyrazole or by 1 mM phenobarbital. However, the enzyme activity was inhibited by approximately 60 percent by 1 mM chlorpromazine or by 5 mM 1,10-orthophenanthroline. Our data demonstrate that the enzyme is not only separable from the NADPH-linked aldehyde reductase described previously by TABAKOFF and ERWIN, but also is quite different in substrate specificity and inhibitor sensitivity from the ‘classical’, pyrazole-sensitive, NAD- linked alcohol dehydrogenase (EC 1.1.1.1).  相似文献   

7.
Judged by properties observed during the purification and based on the sequence of the first 25 amino acids, the enzyme from Clostridium formicoaceticum catalysing the reversible reduction of non-activated carboxylic acids to aldehydes at the expense of reduced viologens, is astonishingly different from that found by us in C. thermoaceticum. According to native and SDS gel electrophoresis the reductase is nearly homogeneous after only 26-fold purification. The specificity for various substrates and artificial electron carriers is also broad, but V of the purified aldehyde dehydrogenase activity (54 U/mg enzyme for butanal) is about 1 order of magnitude lower than that of the enzyme from C. thermoaceticum. The reductase is a dimer of two identical subunits with an Mr of 67,000 each. Increased enzyme concentrations seem to lead to higher oligomers. Per dimer 11 +/- 1 iron, 16 +/- 1 acid labile sulphur, 1.4 tungsten and after permanganate oxidation 1.6 mol pterin-6-carboxylic acid have been found.  相似文献   

8.
An aldehyde reductase catalyzing the NADPH-dependent reduction of D-erythrose 4-phosphate to D-erythritol 4-phosphate was purified from beef liver. It was proved to be homogeneous by polyacrylamide gel electrophoresis, sodium dodecyl sulfate polyacrylamide gel electrophoresis and ultracentrifugation analysis. The enzyme was proved to be a monomeric enzyme and its molecular weight was about 40,000. The enzyme was able to reduce not only tetroses but also trioses, aromatic aldehydes, D-glucuronate and succinic semialdehyde. Apparent Km-values for aromatic aldehydes were lower than those for tetroses, trioses, D-glucuronate and succinic semi-aldehyde. Barbiturates and valproate were potent inhibitors of the enzyme and their apparent K1-values were in the range of 80-180 microM. Quercitrin was the most potent inhibitor and its K1-value was about 7 microM. From the viewpoint of substrate specificity and inhibitor sensitivity, it seems that the enzyme belongs to the high-Km type aldehyde reductases.  相似文献   

9.
An aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646 was purified 196-fold by a combination of Mono-Q, Reactive Green 19 agarose affinity, and hydroxyapatite chromatographies. The purified enzyme runs as a single band of 140 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 163 +/- 3.8 kDa by gel filtration, indicating that this enzyme is a monomeric protein. The binding of the enzyme to Reactive Green 19 agarose was Mg2+ dependent. The binding capacity was estimated to be about 0.2 mg of Reactive Green agarose per ml in the presence of 10 mM MgCl2. This enzyme can catalyze the reduction of a wide range of aryl carboxylic acids, including substituted benzoic acids, phenyl-substituted aliphatic acids, heterocyclic carboxylic acids, and polyaromatic ring carboxylic acids, to produce the corresponding aldehydes. The Km values for benzoate, ATP, and NADPH were determined to be 645 +/- 75, 29.3 +/- 3.1, and 57.3 +/- 12.5 microM, respectively. The Vmax was determined to be 0.902 +/- 0.04 micromol/min/mg of protein. Km values for (S)-(+)-alpha-methyl-4-(2-methylpropyl)-benzeneacetic acid (ibuprofen) and its (R)-(-) isomer were determined to be 155 +/- 18 and 34.5 +/- 2.5 microM, respectively. The Vmax for the (S)-(+) and (R)-(-) isomers were 1.33 and 0.15 micromol/min/mg of protein, respectively. Anthranilic acid is a competitive inhibitor with benzoic acid as a substrate, with a Ki of 261 +/- 30 microM. The N-terminal and internal amino acid sequences of a 76-kDa peptide from limited alpha-chymotrypsin digestion were determined.  相似文献   

10.
During the purification of pig kidney aldehyde reductase by an established procedure [Flynn, Cromlish & Davidson (1982) Methods Enzymol. 89, 501-506] a second enzyme with aldehyde reductase activity may be purified. When the procedure was performed in the presence of 5 mM-EDTA, only traces of the second reductase, pig kidney aldehyde reductase (minor form), were present. By the criterion of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, pig kidney aldehyde reductase (minor form) had Mr 35 000, in comparison with Mr 40 200 found for pig kidney aldehyde reductase. Amino acid analysis of both enzymes and tryptic-peptide-map comparisons indicated differences in primary structure. The N-terminus of pig kidney aldehyde reductase (minor form) had the sequence Lys-Val-Leu, in contrast with the blocked (acetylated) N-terminus of pig kidney aldehyde reductase. The C-terminal sequence of both enzymes was the same. Both reductases were immunologically identical by double immunodiffusion and rocket immunoelectrophoresis. Pig kidney aldehyde reductase (minor form) had 50% of the specific activity of pig kidney aldehyde reductase when tested with a variety of aldehyde substrates. Michaelis constants of both enzymes for these substrates and for NADPH were similar, but values for kcat. and kcat./Km indicated that catalytically pig kidney aldehyde reductase was the more efficient enzyme. Typical aldehyde reductase inhibitors, such as phenobarbital and sodium valproate, had the same effect on both enzymes. It was concluded that pig kidney aldehyde reductase (minor form) is an enzymically active cleavage product of pig kidney aldehyde reductase which is formed when the latter is purified in the absence of the metalloproteinase inhibitor EDTA.  相似文献   

11.
An aldehyde reductase (EC 1.1.1.2) from human liver has been purified to homogeneity. The enzyme is NADPH-dependent, prefers aromatic to aliphatic aldehydes as substrates, and is inhibited by barbiturates and hydantoins. The following physicochemical parameters were determined: molecular weight, 36,200; sedimentation coefficient, 2.9 S; Stokes radius, 2.65 nm; isoelectric point, pH 5.3; extinction coefficient at 280 nm, 54,300 M-1 cm-1. Results from polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate, gel filtration, and ultracentrifugation suggest a monomeric structure. On molecule of NADPH binds to the enzyme causing a red shift of the coenzyme absorption maximum from 340 to 352 nm. The amino acid composition has been determined and a partial specific volume of 0.74 was computed from these data. An alpha-helicity of 7 and 18% was estimated from the ellipticities at 208 and 222 nm, respectively. Combination of the most reactive thiol group with p-mercuribenzoate does not cause loss of catalytic activity. Inactivation occurs when more than one thiol group is modified. The presence of NADPH or NADP+ prevents loss of activity by thiol modification. The comparison of structural features of aldehyde reductase with other monomeric and oligomeric dehydrogenases suggest similarities of aldehyde reductase with octopine dehydrogenase.  相似文献   

12.
Y Takada  T Noguchi  R Kido 《Life sciences》1977,20(4):609-616
Aromatic 2-oxo acid reductase was purified to homogeneity from the cytosol of dog heart. The purified enzyme utilized various 2-oxo acids as substrates in the following order of activity: oxaloacetate > 3,5-diiodo-4-hydroxyphenylpyruvate > indolepyruvate > phenylpyruvate. Little or no activity was detected with glyoxylate, pyruvate, hydroxypyruvate, 2-oxoglutarate and 2-oxoadipate. NADH was active as coenzyme but not NADPH. The enzyme has an isoelectric point of 5.4 and is probably composed of two identical subunits with a molecular weight of approx. 40000. Evidence was presented that aromatic 2-oxo acid reductase is identical with one of the cytosol malate dehydrogenase isoenzymes. The enzyme was also found in the brain, kidney and liver of dog.  相似文献   

13.
Aldehyde oxidoreductase (carboxylic acid reductase (Car)) catalyzes the magnesium-, ATP-, and NADPH-dependent reduction of carboxylic acids to their corresponding aldehydes. Heterologous expression of the car gene in Escherichia coli afforded purified recombinant enzyme with a specific activity nearly 50-fold lower than that of purified native Nocardia sp. enzyme. The 5-fold increase in specific activity obtained by incubating purified recombinant Car with CoA and Nocardia cell-free extracts indicated that post-translational phosphopantetheinylation of Car is required for maximum enzyme activity. Nocardia phosphopantetheine transferase (PPTase) expressed in E. coli was isolated and characterized. When incubated with [(3)H]acetyl-CoA and Nocardia PPTase, the labeled acetylphosphopantetheine moiety was incorporated into recombinant Car. Coexpression of Nocardia Car and PPTase in E. coli gave a reductase with nearly 20-fold higher specific activity. Site-directed mutagenesis in which Ser(689) was replaced with Ala resulted in an inactive Car mutant. The results show that Car expressed in Escherichia coli is an apoenzyme that is converted to a holoenzyme by post-translational modification via phosphopantetheinylation. Doubly recombinant resting E. coli cells efficiently reduce vanillic acid to vanillin.  相似文献   

14.
15.
Aldehyde reductase (aldose reductase) was purified to homogeneity (as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis) from bovine lens by affinity chromatography on NADP+-Sepharose. The enzyme, a monomer of Mr about 40000, was active with a variety of alpha- hydroxyketones , including fructose. The minimum degree of the rate equation was 2:2 in the case of DL-glyceraldehyde, but linear kinetics were observed for glucose and NADPH over the concentration range studied. The enzyme largely followed a ternary-complex mechanism, with initial binding of NADPH before glucose and final release of NADP+.  相似文献   

16.
17.
Cytoplasmic aldehyde dehydrogenase from bovine lens was purified to apparent homogeneity by using ion-exchange and affinity chromatography. Sedimentation-equilibrium ultracentrifugation, gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis show that the enzyme is a dimer of Mr 114000, with subunits of Mr 57000. The enzyme does not dissociate into monomers in the presence of Ca2+ or Mg2+. The enzyme has a pI of 5.0, an activation energy of 35.1kJ/mmol and a pK value of 8.6 with acetaldehyde as substrate. The enzyme is a prolate ellipsoid with a Stokes radius of 4nm. Progesterone, deoxycorticosterone and chlorpropamide inhibited enzyme activity, and this inhibition may play a role in cataract formation in patients maintained on systemic corticosteroids and in tablet-dependent diabetics.  相似文献   

18.
The purification of a 2-alkenal reductase to homogeneity from a rat liver 100 000 times g supernatant is described. Its molecular weight has been determined by Sephadex G-100 chromatography and sodium dodecylsulfate polyacrylamide gel electrophoresis before and after reduction with mercaptoethanol and carboxymethylation. The monometric form has a molecular weight of 45 000. It tends to form, to a very small extent, dimeric and trimeric aggregates of molecular weights 90 000 and 135 000. The isoelectric point (IP) was determined to be 6.2 by isoelectric focusing.  相似文献   

19.
Aldose reductase (EC 1.1.1.21) and aldehyde reductase II (L-hexonate dehydrogenase, EC 1.1.1.2) have been purified to homogeneity from human erythrocytes by using ion-exchange chromatography, chromatofocusing, affinity chromatography, and Sephadex gel filtration. Both enzymes are monomeric, Mr 32,500, by the criteria of the Sephadex gel filtration and polyacrylamide slab gel electrophoresis under denaturing conditions. The isoelectric pH's for aldose reductase and aldehyde reductase II were determined to be 5.47 and 5.06, respectively. Substrate specificity studies showed that aldose reductase, besides catalyzing the reduction of various aldehydes such as propionaldehyde, pyridine-3-aldehyde and glyceraldehyde, utilizes aldo-sugars such as glucose and galactose. Aldehyde reductase II, however, did not use aldo-sugars as substrate. Aldose reductase activity is expressed with either NADH or NADPH as cofactors, whereas aldehyde reductase II can utilize only NADPH. The pH optima for aldose reductase and aldehyde reductase II are 6.2 and 7.0, respectively. Both enzymes are susceptible to the inhibition by p-hydroxymercuribenzoate and N-ethylmaleimide. They are also inhibited to varying degrees by aldose reductase inhibitors such as sorbinil, alrestatin, quercetrin, tetramethylene glutaric acid, and sodium phenobarbital. The presence of 0.4 M lithium sulfate in the assay mixture is essential for the full expression of aldose reductase activity whereas it completely inhibits aldehyde reductase II. Amino acid compositions and immunological studies further show that erythrocyte aldose reductase is similar to human and bovine lens aldose reductase, and that aldehyde reductase II is similar to human liver and brain aldehyde reductase II.  相似文献   

20.
Nocardia brasiliensis possess proteolytic activities that can be readily detected in a variety of media. In a modified formulation of a growth medium originally used for Streptomyces aureofaciens, N. brasiliensis was found to secrete proteolytic enzymes, one of which was capable of hydrolyzing casein. This enzyme was purified to homogeneity from cell-free culture filtrates of N. brasiliensis. The purification procedure included ion-exchange chromatography on carboxymethyl-Sepharose, gel filtration on Sephadex G-100, and affinity chromatography, using a hemoglobin-Sepharose resin. The molecular weight of the N. brasiliensis protease was found to be 25,000 by gel filtration and 35,000 by sodium dodecyl sulfate-discontinuous gel electrophoresis. The enzyme is inhibited by o-phenanthroline and 8-hydroxyquinoline-5-sulfonic acid but is not affected by EDTA. Average values for its kinetic parameters were 0.288 mumol of hemoglobin solubilized per min per mg of enzyme for Vmax and 0.76 mM for Km, using hemoglobin as the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号