首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins.  相似文献   

2.
Anginex, a novel artificial cytokine-like peptide (βpep-25), is designed by using basic folding principles and incorporating short sequences from the β-sheet domains of anti-angiogenic agents, including platelet factor-4 (PF4), interleukin-8 (IL-8), and bactericidal-permeability increasing protein 1 (BP1). Anginex can specially block the adhesion and migration of the angiogenically activated endothelial cells (ECs), leading to apoptosis and ultimately to the inhibition of angiogenesis and tumor growth. In vitro and in vivo studies have proved its inhibitory effects on the formation of new blood vessels and tumor growth even though the mechanism is not clear. The inhibitory effects of anginex can be enhanced when it is applied in combination with other therapies, such as chemotherapy, radiotherapy and other anti-angiogenic agents. The limitations of anginex, including poor stability, short half life, complicated synthesis and low purity, have been conquered by modifying its structure or designing novel compound anginex and recombinant anginex, which makes possible the clinical application of anginex. Here, we summarize the basic and preclinical trials of anginex and discuss the prospects of anginex in clinical application. We come to the conclusion that anginex and compound or recombinant anginex can be used as effective anti-angiogenic agents.  相似文献   

3.
We have previously shown that streptozotocin (STZ) inhibits O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase (O-GlcNAcase), the enzyme that removes O-GlcNAc from proteins. In light of this observation, we explored the possibility that the diabetogenic toxin alloxan, an O-GlcNAc transferase (OGT) inhibitor, might also inhibit O-GlcNAcase. Alloxan inhibited islet O-GlcNAcase with a dose-response much like that of STZ. Similar to STZ, islet O-GlcNAcase was more susceptible to alloxan inhibition than was brain O-GlcNAcase. Alloxan directly inhibited recombinant O-GlcNAcase activity with a dose-response very similar to that of STZ. Subsequent LC/MS/MS analysis revealed that alloxan modified the tryptic digest pattern of the enzyme. One tryptic peptide LGCFEIAK(894-901) was modified by alloxan. Two other tryptic peptides, LDQVSQFGCR(158-167) and SFALLFDDIDHNMCAADK(168-185), both N-terminal active site peptides, were absent after alloxan treatment. Together, these data demonstrate that alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase, with inhibition corresponding to an altered tryptic digest pattern of N-terminal active site peptides.  相似文献   

4.
5.
6.
The colonial tunicate Botrylloides leachi can regenerate functional adults from minute vasculature fragments, in a poorly understood phenomenon termed Whole Body Regeneration (WBR). Using Piwi expression (Bl-Piwi), blood cell labeling and electron microscopy, we show that WBR develops through activation, mobilization and expansion of ‘dormant’ cells which normally line the internal vasculature epithelium of blood vessels. Following a mechanical insult, these cells express Bl-Piwi de novo, change morphology and invade niches of the vasculature lumen, where they proliferate and differentiate, regenerating a functional organism. Mitomycin C treatments and siRNA knockdown of Bl-Piwi result in deficient cells incapable of expanding or differentiating and to subsequent regeneration arrest. Last, we find similar transient mobilization of Piwi+ cells recurring every week, as part of normal colony development, and also during acute environmental stress. This recurrent activation of Piwi+ cells in response to developmental, physiological and environmental insults may have enabled the adaptation of colonial tunicates to the imposed varied conditions in the marine, shallow water environment.  相似文献   

7.
Protein O-GlcNAcylation is proceeded by O-linked GlcNAc transferase (OGT) in nucleocytoplasm and is involved in many biological processes although its physiological role is not clearly defined. To identify the functional significance of O-GlcNAcylation, we investigated heat stress effects on protein O-GlcNAcylation. Here, we found that protein O-GlcNAcylation was significantly increased in vivo during acute heat stress in mammalian cells and simultaneously, the enhanced protein O-GlcNAcylation was closely associated with cell survival in hyperthermia. Our results demonstrate that hyperthermal cytotoxicity may considerably be facilitated under the condition of insufficient level of protein O-GlcNAcylation inside cells. Furthermore, OGT reaction might be crucial for triggering thermotolerance to recover hyperthermal sensitivity without particular induction of heat shock proteins (hsps). Thus, we propose that OGT can respond rapidly to heat stress through the enhancement of nucleocytoplasmic protein O-GlcNAcylation for a rescue from the early phase of hyperthermal cytotoxicity.  相似文献   

8.
9.
Isoprenoid lipids were found to be covalently linked to proteins of Arabidopsis thaliana. Their identity (polyprenols: Prenol-9-11 with Pren-10 dominating and dolichols: Dol-15-17 with Dol-16 dominating) was confirmed by means of HPLC/ESI-MS with application of the multiple reaction monitoring technique as well as metabolic labeling of Arabidopsis plants with [3H]mevalonate and other precursors. The occurrence of typical farnesol-, geranylgeraniol-, and phytol-modified proteins was also noted. Radioisotopic labeling allowed detection of several proteins that were covalently bound to mevalonate-derived isoprenoid alcohols. A significant portion of polyisoprenylated proteins was recovered in the cytosolic/light vesicular fraction of Arabidopsis cells upon subfractionation. Taken together our data prove that a subset of plant proteins is polyisoprenylated.  相似文献   

10.
11.
Fifty strains of bacteria were isolated from six isolates of the nematode Bursaphelenchus mucronatus (Bm) from China and Russia and identified using the BioMerieux Vitek 32 system. In bioassay, 3 bacterial strains showed the high levels of phytotoxin production while 19, 16, and 12 strains showed moderately, low and no phytotoxin production, respectively. Inoculation of 2-month-old Pinus thunbergii seedling with each of the six Bm isolates showed that the mean number of days from inoculation to death of 80% of the seedlings was significantly related to the ratio of the total number of bacterial strains for a nematode isolate to the number of pathogenic bacterial strains of the nematode isolate. The results of inoculation of 3-year-old P. thunbergii seedlings showed that inoculation with either axenic Bm (ABm) or axenic B. xylophilus (ABx) and the pathogenic bacterial strain together were essential for inducing pine wilt. These findings demonstrate that wilt symptoms caused by Bm conform to our earlier hypothesis (Zhao et al., 2003) that pine wilt disease, induced by certain Bx or Bm isolates, is caused by a complex of both the nematodes and their associated pathogenic bacteria. The results also account for the variation in pathogenicity of Bm populations from different parts of the world.  相似文献   

12.
We describe the isolation and characterization of an insect pathogenic bacterium from the entomopathogenic nematode Heterorhabditis indica (Karnataka strain), an isolate from the southern regions of India. The strain has been identified and characterized by phenotypic, biochemical tests and PCR-RFLP analysis of the 16S rRNA gene as Photorhabdus luminescens subsp. akhurstii. The insecticidal toxin complex produced by this bacterium has been purified through a series of steps including ultrafiltration, anion exchange chromatography, and gel filtration chromatography. The toxin consists of two protein complexes of approximately 1,000 kD and was active against the larvae of Spodoptera litura and Galleria mellonella.  相似文献   

13.
All multicellular organisms depend on stem cells for their survival and perpetuation. Their central role in reproductive, embryonic, and post-embryonic processes, combined with their wide phylogenetic distribution in both the plant and animal kingdoms intimates that the emergence of stem cells may have been a prerequisite in the evolution of multicellular organisms. We present an evolutionary perspective on stem cells and extend this view to ascertain the value of current comparative studies on various invertebrate and vertebrate somatic and germ line stem cells. We suggest that somatic stem cells may be ancestral, with germ line stem cells being derived later in the evolution of multicellular organisms. We also propose that current studies of stem cell biology are likely to benefit from studying the somatic stem cells of simple metazoans. Here, we present the merits of neoblasts, a largely unexplored, yet experimentally accessible population of stem cells found in the planarian Schmidtea mediterranea. We introduce what we know about the neoblasts, and posit some of the questions that will need to be addressed in order to better resolve the relationship between planarian somatic stem cells and those found in other organisms, including humans.  相似文献   

14.
The present study was undertaken to analyse the capability of HIV-1 derived TAT protein transduction domain (PTD) fused with Green Fluorescent Protein (TAT-GFP) as a delivery vehicle into a range of protozoan parasites. Successful transduction of native purified TAT-GFP was observed by fluorescent microscopy in Cryptosporidium parvum, Giardia duodenalis, and Neospora caninum. The ability to transduce peptides and other cargo into protozoan parasites, will greatly assist in the delivery of future peptide-based drugs and target validation peptides.  相似文献   

15.
BACKGROUND: Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. PITCHER: Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. INQUILINE: Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). CONCLUSIONS: There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.  相似文献   

16.
Using oligonucleotide primers designed to the known gene sequence of an (E)-beta-farnesene (EbetaF) synthase, two cDNA sequences (MxpSS1 and MxpSS2) were cloned from a black peppermint (Menthaxpiperita) plant. MxpSS1 encoded a protein with 96% overall amino acid sequence identity with the EbetaF synthase. Recombinant MxpSS1 produced in Escherichia coli, after removal of an N-terminal thioredoxin fusion, had a K(m) for FPP of 1.91+/-0.1 microM and k(cat) of 0.18 s(-1), and converted farnesyl diphosphate (FPP) into four products, the major two being cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%). This is the first cis-muuroladiene synthase, to be characterised. MxpSS2 encoded a protein with only two amino acids differing from EbetaF synthase. Recombinant MxpSS2 protein showed no activity towards FPP. One of the two mutations, at position 531 (leucine in MxpSS2 and serine in EbetaF synthase) was shown, by structural modelling to occur in the J-K loop, an element of the structure of sesquiterpene synthases known to be important in the reaction mechanism. Reintroduction of the serine at position 531 into MxpSS2 by site-directed mutagenesis restored EbetaF synthase activity (K(m) for FPP 0.98+/-0.12 microM, k(cat) 0.1 s(-1)), demonstrating the crucial role of this residue in the enzyme activity. Analysis, by GC-MS, of the sesquiterpene profile of the plant used for the cloning, revealed that EbetaF was not present, confirming that this particular mint chemotype had lost EbetaF synthase activity due to the observed mutations.  相似文献   

17.
The aim of this review is to evoke briefly the progress that has been made in our knowledge about the contribution of the neural crest to the vertebrate body since it was discovered by Wilhelm His in 1868. Although first studied essentially in amphibian embryos, a large amount of what is known on this very special structure was gained by experimental work carried out on the avian embryo. The making of chimeras between quail and chick has permitted not only to analyse the normal course of neural crest cell migration and differentiation but also to reveal some of the cellular interactions that regulate these events. Looking to the future, we can foresee that the novel methods, which now allow to manipulate gene activities in definite groups of cells and at elected times in the developing embryo, will make the avian model even more instrumental than ever to approach the developmental problems raised by neural crest cell differentiation.  相似文献   

18.
DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution.  相似文献   

19.
The p24 proteins function in early secretory pathway transport processes, but their exact role is unclear. In physiologically activated Xenopus melanotrope cells, a representative of each p24 subfamily (p24α3, -β1, -γ3, -δ2) is upregulated coordinately with the major melanotrope cargo, proopiomelanocortin (POMC), whereas two other p24s (p24γ2 and -δ1) are also expressed, but not coordinately with POMC. Using melanotrope-specific transgene expression, we here find that the roles of both p24γ2 and p24δ1 in the transport, glycosylation, sulphation and cleavage of POMC are different from those of their upregulated subfamily relatives (p24γ3 and p24δ2, respectively). Thus, even p24 proteins from the same subfamily have distinct functions in secretory cargo biosynthesis.  相似文献   

20.
The insulin-like family of factors are involved in the regulation of a variety of physiological processes, but the function of the family member termed insulin-like 6 (Insl6) in skeletal muscle has not been reported. We show that Insl6 is a myokine that is up-regulated in skeletal muscle downstream of Akt signaling and in regenerating muscle in response to cardiotoxin (CTX)-induced injury. In the CTX injury model, myofiber regeneration was improved by the intramuscular or systemic delivery of an adenovirus expressing Insl6. Skeletal muscle-specific Insl6 transgenic mice exhibited normal muscle mass under basal conditions but elevated satellite cell activation and enhanced muscle regeneration in response to CTX injury. The Insl6-mediated regenerative response was associated with reductions in muscle cell apoptosis and reduced serum levels of creatine kinase M. Overexpression of Insl6 stimulated proliferation and reduced apoptosis in cultured myogenic cells. Conversely, knockdown of Insl6 reduced proliferation and increased apoptosis. These data indicate that Insl6 is an injury-regulated myokine that functions as a myogenic regenerative factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号