首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisomes are components of virtually all eukaryotic cells. While much is known about peroxisomal matrix protein import, our understanding of how peroxisomal membrane proteins (PMPs) are targeted and inserted into the peroxisome membrane is extremely limited. Here, we show that PEX19 binds a broad spectrum of PMPs, displays saturable PMP binding, and interacts with regions of PMPs required for their targeting to peroxisomes. Furthermore, mislocalization of PEX19 to the nucleus leads to nuclear accumulation of newly synthesized PMPs. At steady state, PEX19 is bimodally distributed between the cytoplasm and peroxisome, with most of the protein in the cytoplasm. We propose that PEX19 may bind newly synthesized PMPs and facilitate their insertion into the peroxisome membrane. This hypothesis is supported by the observation that the loss of PEX19 results in degradation of PMPs and/or mislocalization of PMPs to the mitochondrion.  相似文献   

2.
The human peroxins PEX3 and PEX19 are essential for peroxisome biogenesis. They mediate the import of membrane proteins as well as the de novo formation of peroxisomes. PEX19 binds newly synthesized peroxisomal membrane proteins post-translationally and directs them to peroxisomes by engaging PEX3, a protein anchored in the peroxisomal membrane. After protein insertion into the lipid bilayer, PEX19 is released back to the cytosol. Crystallographic analysis provided detailed insights into the PEX3-PEX19 interaction and identified three highly conserved regions, the PEX19-binding region, a hydrophobic groove and an acidic cluster, on the surface of PEX3. Here, we used site-directed mutagenesis and biochemical and functional assays to determine the role of these regions in PEX19-binding and peroxisome biogenesis. Mutations in the PEX19-binding region reduce the affinity for PEX19 and destabilize PEX3. Furthermore, we provide evidence for a crucial function of the PEX3-PEX19 complex during de novo formation of peroxisomes in peroxisome-deficient cells, pointing to a dual function of the PEX3-PEX19 interaction in peroxisome biogenesis. The maturation of preperoxisomes appears to require the hydrophobic groove near the base of PEX3, presumably by its involvement in peroxisomal membrane protein insertion, while the acidic cluster does not appear to be functionally relevant.  相似文献   

3.
PEX19 is a chaperone and import receptor for newly synthesized, class I peroxisomal membrane proteins (PMPs). PEX19 binds these PMPs in the cytoplasm and delivers them to the peroxisome for subsequent insertion into the peroxisome membrane, indicating that there may be a PEX19 docking factor in the peroxisome membrane. Here we show that PEX3 is required for PEX19 to dock at peroxisomes, interacts specifically with the docking domain of PEX19, and is required for recruitment of the PEX19 docking domain to peroxisomes. PEX3 is also sufficient to dock PEX19 at heterologous organelles and binds PEX19 via a conserved motif that is essential for this docking activity and for PEX3 function in general. Not surprisingly, transient inhibition of PEX3 abrogates class I PMP import but has no effect on class II PMP import or peroxisomal matrix protein import. Taken together, these results suggest that PEX3 plays a selective, essential, and direct role in PMP import as a docking factor for PEX19.  相似文献   

4.
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.  相似文献   

5.
The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.  相似文献   

6.
Tail-anchored (TA) proteins are anchored into cellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although the targeting of TA proteins to peroxisomes is dependent on PEX19, the mechanistic details of PEX19-dependent targeting and the signal that directs TA proteins to peroxisomes have remained elusive, particularly in mammals. The present study shows that PEX19 formed a complex with the peroxisomal TA protein PEX26 in the cytosol and translocated it directly to peroxisomes by interacting with the peroxisomal membrane protein PEX3. Unlike in yeast, the adenosine triphosphatase TRC40, which delivers TA proteins to the endoplasmic reticulum, was dispensable for the peroxisomal targeting of PEX26. Moreover, the basic amino acids within the luminal domain of PEX26 were essential for binding to PEX19 and thereby for peroxisomal targeting. Finally, our results suggest that a TMD that escapes capture by TRC40 and is followed by a highly basic luminal domain directs TA proteins to peroxisomes via the PEX19-dependent route.  相似文献   

7.
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.  相似文献   

8.
Taras Y. Nazarko 《Autophagy》2017,13(5):991-994
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.  相似文献   

9.
The biogenesis of peroxisomes requires the interaction of several peroxins, encoded by PEX genes and is well conserved between yeast and humans. We have cloned the human cDNA of PEX3 based on its homology to different yeast PEX3 genes. The deduced peroxin HsPEX3 is a peroxisomal membrane protein with a calculated molecular mass of 42.1 kDa. We created N- and C-terminal tagged PEX3 to assay its topology at the peroxisomal membrane by immunofluorescence microscopy. Our results and the one predicted transmembrane spanning region are in line with the assumption that H sPEX3 is an integral peroxisomal membrane protein with the N-terminus inside the peroxisome and the C-terminus facing the cytoplasm. The farnesylated peroxisomal membrane protein PEX19 interacts with HsPEX3 in a mammalian two-hybrid assay in human fibroblasts. The physical interaction could be confirmed by coimmunoprecipitation of the two in vitro transcribed and translated proteins. To address the targeting of PEX3 to the peroxisomal membrane, the expression of different N- and C-terminal PEX3 truncations fused to green fluorescent protein (GFP) was investigated in human fibroblasts. The N-terminal 33 amino acids of PEX3 were necessary and sufficient to direct the reporter protein GFP to peroxisomes and seemed to be integrated into the peroxisomal membrane. The expression of a 1-16 PEX3-GFP fusion protein did not result in a peroxisomal localization, but interestingly, this and several other truncated PEX3 fusion proteins were also localized to tubular and/or vesicular structures representing mitochondria.  相似文献   

10.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

11.
Peroxisomes are dynamic organelles that often proliferate in response to compounds that they metabolize. Peroxisomes can proliferate by two apparent mechanisms, division of preexisting peroxisomes and de novo synthesis of peroxisomes. Evidence for de novo peroxisome synthesis comes from studies of cells lacking the peroxisomal integral membrane peroxin Pex3p. These cells lack peroxisomes, but peroxisomes can assemble upon reintroduction of Pex3p. The source of these peroxisomes has been the subject of debate. Here, we show that the amino-terminal 46 amino acids of Pex3p of Saccharomyces cerevisiae target to a subdomain of the endoplasmic reticulum and initiate the formation of a preperoxisomal compartment for de novo peroxisome synthesis. In vivo video microscopy showed that this preperoxisomal compartment can import both peroxisomal matrix and membrane proteins leading to the formation of bona fide peroxisomes through the continued activity of full-length Pex3p. Peroxisome formation from the preperoxisomal compartment depends on the activity of the genes PEX14 and PEX19, which are required for the targeting of peroxisomal matrix and membrane proteins, respectively. Our findings support a direct role for the endoplasmic reticulum in de novo peroxisome formation.  相似文献   

12.
Peroxins are proteins required for peroxisome assembly. The cytosolic peroxin Pex20p binds directly to the beta-oxidation enzyme thiolase and is necessary for its dimerization and peroxisomal targeting. The intraperoxisomal peroxin Pex8p has a role in the import of peroxisomal matrix proteins, including thiolase. We report the results of yeast two-hybrid analyses with various peroxins of the yeast Yarrowia lipolytica and characterize more fully the interaction between Pex8p and Pex20p. Coimmunoprecipitation showed that Pex8p and Pex20p form a complex, while in vitro binding studies demonstrated that the interaction between Pex8p and Pex20p is specific, direct, and autonomous. Pex8p fractionates with peroxisomes in cells of a PEX20 disruption strain, indicating that Pex20p is not necessary for the targeting of Pex8p to peroxisomes. In cells of a PEX8 disruption strain, thiolase is mostly cytosolic, while Pex20p and a small amount of thiolase associate with peroxisomes, suggesting the involvement of Pex8p in the import of thiolase after docking of the Pex20p-thiolase complex to the membrane. In the absence of Pex8p, peroxisomal thiolase and Pex20p are protected from the action of externally added protease. This finding, together with the fact that Pex8p is intraperoxisomal, suggests that Pex20p may accompany thiolase into peroxisomes during import.  相似文献   

13.
14.
Mutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants.  相似文献   

15.
The peroxisome-biogenesis disorders (PBDs) are a group of genetically heterogeneous, lethal diseases that are characterized by neuronal, hepatic, and renal abnormalities; severe mental retardation; and, in their most severe form, death within the 1st year of life. Cells from all PBD patients exhibit decreased import of one or more classes of peroxisome matrix proteins, a phenotype shared by yeast pex mutants. We identified the human orthologue of yeast PEX10 and observed that its expression rescues peroxisomal matrix-protein import in PBD patients'' fibroblasts from complementation group 7 (CG7). In addition, we detected mutations on both copies of PEX10 in two unrelated CG7 patients. A Zellweger syndrome patient, PBD100, was homozygous for a splice donor-site mutation that results in exon skipping and loss of 407 bp from the PEX10 open reading frame. A more mildly affected neonatal adrenoleukodystrophy patient was a compound heterozygote for a missense mutation in the PEX10 zinc-binding domain, H290Q, and for a nonsense mutation, R125ter. Although all three mutations attenuate PEX10 activity, the two alleles detected in the mildly affected patient, PBD052, encode partially functional PEX10 proteins. PEX10-deficient PBD100 cells contain many peroxisomes and import peroxisomal membrane proteins but do not import peroxisomal matrix proteins, indicating that loss of PEX10 has its most pronounced effect on peroxisomal matrix-protein import.  相似文献   

16.
PEX genes encode peroxins, which are proteins required for peroxisome assembly. The PEX19 gene of the yeast Yarrowia lipolytica was isolated by functional complementation of the oleic acid-nonutilizing strain pex19-1 and encodes Pex19p, a protein of 324 amino acids (34,822 Da). Subcellular fractionation and immunofluorescence microscopy showed Pex19p to be localized primarily to peroxisomes. Pex19p is detected in cells grown in glucose-containing medium, and its levels are not increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex19 cells preferentially mislocalize peroxisomal matrix proteins and the peripheral intraperoxisomal membrane peroxin Pex16p to the cytosol, although small amounts of these proteins could be reproducibly localized to a subcellular fraction enriched for peroxisomes. In contrast, the peroxisomal integral membrane protein Pex2p exhibits greatly reduced levels in pex19 cells compared with its levels in wild-type cells. Importantly, pex19 cells were shown by electron microscopy to contain structures that resemble wild-type peroxisomes in regards to size, shape, number, and electron density. Subcellular fractionation and isopycnic density gradient centrifugation confirmed the presence of vesicular structures in pex19 mutant strains that were similar in density to wild-type peroxisomes and that contained profiles of peroxisomal matrix and membrane proteins that are similar to, yet distinct from, those of wild-type peroxisomes. Because peroxisomal structures form in pex19 cells, Pex19p apparently does not function as a peroxisomal membrane protein receptor in Y. lipolytica. Our results are consistent with a role for Y. lipolytica Pex19p in stabilizing the peroxisomal membrane.  相似文献   

17.
Peroxisomes are degraded by a selective type of autophagy known as pexophagy. Several different types of pexophagy have been reported in mammalian cells. However, the mechanisms underlying how peroxisomes are recognized by autophagy-related machinery remain elusive. PEX3 is a peroxisomal membrane protein (PMP) that functions in the import of PMPs into the peroxisomal membrane and has been shown to interact with pexophagic receptor proteins during pexophagy in yeast. Thus, PEX3 is important not only for peroxisome biogenesis, but also for peroxisome degradation. However, whether PEX3 is involved in the degradation of peroxisomes in mammalian cells is unclear. Here, we report that high levels of PEX3 expression induce pexophagy. In PEX3-loaded cells, peroxisomes are ubiquitinated, clustered, and degraded in lysosomes. Peroxisome targeting of PEX3 is essential for the initial step of this degradation pathway. The degradation of peroxisomes is inhibited by treatment with autophagy inhibitors or siRNA against NBR1, which encodes an autophagic receptor protein. These results indicate that ubiquitin- and NBR1-mediated pexophagy is induced by increased expression of PEX3 in mammalian cells. In addition, another autophagic receptor protein, SQSTM1/p62, is required only for the clustering of peroxisomes. Expression of a PEX3 mutant with substitution of all lysine and cysteine residues by arginine and alanine, respectively, also induces peroxisome ubiquitination and degradation, hence suggesting that ubiquitination of PEX3 is dispensable for pexophagy and an endogenous, unidentified peroxisomal protein is ubiquitinated on the peroxisomal membrane.  相似文献   

18.
Trypanosoma brucei contains peroxisome-like organelles designated glycosomes because they sequester the major part of the glycolytic pathway. Import of proteins into the peroxisomal matrix involves a protein complex associated with the peroxisomal membrane of which PEX13 is a component. Two very different PEX13 isoforms have recently been identified in T. brucei. A striking feature of one of the isoforms, TbPEX13.1, is the presence of a C-terminal type 1 peroxisomal-targeting signal (PTS1), the tripeptide TKL, conserved in its orthologues in all members of the Trypanosomatidae family so far studied, but absent from TbPEX13.2 and the PEX13s in all other organisms. Despite their differences, both TbPEX13s function as part of a docking complex for cytosolic receptors with bound matrix proteins to be imported. We further characterized TbPEX13.1's function in glycosomal matrix-protein import. It provides a frame to anchor another docking complex component, PEX14, to the glycosomal membrane or information to correctly position it within the membrane. To investigate the possible function of the C-terminal TKL, we determined the topology of the C-terminal half of TbPEX13.1 in the membrane and show that its SH3 domain, located immediately adjacent to the PTS1, is at the cytosolic face.  相似文献   

19.
We predicted in human peroxisomal membrane proteins (PMPs) the binding sites for PEX19, a key player in the topogenesis of PMPs, by virtue of an algorithm developed for yeast PMPs. The best scoring PEX19-binding site was found in the adrenoleukodystrophy protein (ALDP). The identified site was indeed bound by human PEX19 and was also recognized by the orthologous yeast PEX19 protein. Likewise, both human and yeast PEX19 bound with comparable affinities to the PEX19-binding site of the yeast PMP Pex13p. Interestingly, the identified PEX19-binding site of ALDP coincided with its previously determined targeting motif. We corroborated the requirement of the ALDP PEX19-binding site for peroxisomal targeting in human fibroblasts and showed that the minimal ALDP fragment targets correctly also in yeast, again in a PEX19-binding site-dependent manner. Furthermore, the human PEX19-binding site of ALDP proved interchangeable with that of yeast Pex13p in an in vivo targeting assay. Finally, we showed in vitro that most of the predicted binding sequences of human PMPs represent true binding sites for human PEX19, indicating that human PMPs harbor common PEX19-binding sites that do resemble those of yeast. Our data clearly revealed a role for PEX19-binding sites as PMP-targeting motifs across species, thereby demonstrating the evolutionary conservation of PMP signal sequences from yeast to man.  相似文献   

20.
The biogenesis of peroxisomes is mediated by peroxins (PEXs). PEX7 is a cytosolic receptor that imports peroxisomal targeting signal type 2 (PTS2)-containing proteins. Although PEX7 is important for protein transport, the mechanisms that mediate its function are unknown. In this study, we performed proteomic analysis to identify PEX7-binding proteins using transgenic Arabidopsis expressing green fluorescent protein (GFP)-tagged PEX7. Our analysis identified RabE1c, a small GTPase, as a PEX7 binding partner. In vivo analysis revealed that GTP-bound RabE1c binds to PEX7 and that a subset of RabE1c localizes to peroxisomes and interacts with PEX7 on the peroxisome membrane. Unlike endogenous PEX7, which is predominantly localized to the cytosol, GFP-PEX7 accumulates abnormally on the peroxisomal membrane and induces degradation of endogenous PEX7, concomitant with a reduction in import of PTS2-containing proteins and decreased peroxisomal β-oxidation activity. Thus, GFP-PEX7 on the peroxisomal membrane exerts a dominant negative effect. Mutation of RabE1c restored endogenous PEX7 protein expression and import of PTS2-containing proteins as well as peroxisomal β-oxidation activity. Treatment with proteasome inhibitors also restored endogenous PEX7 protein levels in GFP-PEX7-expressing seedlings. Based on these findings, we conclude that RabE1c binds PEX7 and facilitates PEX7 degradation in the presence of immobile GFP-PEX7 accumulated at the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号