首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate that the differential effects Cbl and oncogenic 70Z/3 Cbl have on Ca(2+)/Ras-sensitive NF-AT reporters is partially due to their opposing ability to regulate phospholipase Cgamma1 (PLCgamma1) activation as demonstrated by analysis of the activation of an NF-AT reporter construct and PLCgamma1-mediated inositol phospholipid (PI) hydrolysis. Cbl over-expression resulted in reduced T cell receptor-induced PI hydrolysis, in the absence of any effect on PLCgamma1 tyrosine phosphorylation. In contrast, expression of 70Z/3 Cbl led to an increase in basal and OKT3-induced PLCgamma1 phosphorylation and PI hydrolysis. These data indicate that Cbl and 70Z/3 Cbl differentially regulate PLCgamma1 phosphorylation and activation. The implications of these data on the mechanism of Cbl-mediated signaling regulation are discussed.  相似文献   

2.
The protooncogene product Cbl has emerged as a negative regulator of tyrosine kinases. We have shown previously that Cbl binds to ZAP-70 through its N-terminal tyrosine kinase binding (TKB) domain. In this study, we demonstrate that overexpression of Cbl in Jurkat T cells decreases the TCR-induced phosphorylation of ZAP-70 and other cellular phosphoproteins. Coexpression of Cbl with ZAP-70 in COS cells reproduced the Cbl-induced reduction in the level of phosphorylated ZAP-70. The effect of Cbl was eliminated by the TKB-inactivating G306E mutation in Cbl as well as by a phenylalanine mutation of Tyr292 within the TKB domain binding site on ZAP-70. Notably, the oncogenic Cbl-70Z/3 mutant associated with ZAP-70, but did not reduce the levels of phosphorylated ZAP-70. Overexpression of Cbl, but not Cbl-G306E, in Jurkat T cells led to a decrease in the TCR-induced NF-AT luciferase reporter activity. Overexpression of the TKB domain itself, but not its G306E mutant, functioned in a dominant-negative manner and led to an increase in NF-AT reporter activity. Cbl-70Z/3-overexpressing cells exhibited an increase in both basal and TCR-induced NF-AT luciferase reporter activity, and this trend was reversed by the G306E mutation. Finally, by reconstituting a ZAP-70-deficient Jurkat T cell line, p116, we demonstrate that wild-type ZAP-70 is susceptible to the negative regulatory effect of Cbl, whereas the ZAP-70-Y292F mutant is resistant. Together, our results establish that the linker phosphorylation site Tyr292 mediates the negative regulatory effect of Cbl on ZAP-70 in T cells.  相似文献   

3.

Background

The fibroblast growth factors (FGFs) are key regulators of embryonic development, tissue homeostasis and tumour angiogenesis. Binding of FGFs to their receptor(s) results in activation of several intracellular signalling cascades including phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)γ1. Here we investigated the basic FGF (FGF-2)-mediated activation of these enzymes in human umbilical vein endothelial cells (HUVECs) and defined their role in FGF-2-dependent cellular functions.

Methodology/Principal Findings

We show that FGF-2 activates PLCγ1 in HUVECs measured by analysis of total inositol phosphates production upon metabolic labelling of cells and intracellular calcium increase. We further demonstrate that FGF-2 activates PI3K, assessed by analysing accumulation of its lipid product phosphatidylinositol-3,4,5-P3 using TLC and confocal microscopy analysis. PI3K activity is required for FGF-2-induced PLCγ1 activation and the PI3K/PLCγ1 pathway is involved in FGF-2-dependent cell migration, determined using Transwell assay, and in FGF-2-induced capillary tube formation (tubulogenesis assays in vitro). Finally we show that PI3K-dependent PLCγ1 activation regulates FGF-2-mediated phosphorylation of Akt at its residue Ser473, determined by Western blotting analysis. This occurs through protein kinase C (PKC)α activation since dowregulation of PKCα expression using specific siRNA or blockade of its activity using chemical inhibition affects the FGF-2-dependent Ser473 Akt phosphorylation. Furthermore inhibition of PKCα blocks FGF-2-dependent cell migration.

Conclusion/Significance

These data elucidate the role of PLCγ1 in FGF-2 signalling in HUVECs demonstrating its key role in FGF-2-dependent tubulogenesis. Furthermore these data unveil a novel role for PLCγ1 as a mediator of PI3K-dependent Akt activation and as a novel key regulator of different Akt-dependent processes.  相似文献   

4.
In RBL-2H3 tumor mast cells, cross-linking the high affinity IgE receptor (FcεRI) with antigen activates cytosolic tyrosine kinases and stimulates Ins(1,4,5)P3 production. Using immune complex phospholipase assays, we show that FcεRI cross-linking activates both PLCγ1 and PLCγ2. Activation is accompanied by the increased phosphorylation of both PLCγ isoforms on serine and tyrosine in antigen-treated cells. We also show that the two PLCγ isoforms have distinct subcellular localizations. PLCγ1 is primarily cytosolic in resting RBL-2H3 cells, with low levels of plasma membrane association. After antigen stimulation, PLCγ1 translocates to the plasma membrane where it associates preferentially with membrane ruffles. In contrast, PLCγ2 is concentrated in a perinuclear region near the Golgi and adjacent to the plasma membrane in resting cells and does not redistribute appreciably after FcεRI cross-linking. The activation of PLCγ1, but not of PLCγ2, is blocked by wortmannin, a PI 3-kinase inhibitor previously shown to block antigen-stimulated ruffling and to inhibit Ins(1,4,5)P3 synthesis. In addition, wortmannin strongly inhibits the antigen-stimulated phosphorylation of both serine and tyrosine residues on PLCγ1 with little inhibition of PLCγ2 phosphorylation. Wortmannin also blocks the antigen-stimulated translocation of PLCγ1 to the plasma membrane. Our results implicate PI 3-kinase in the phosphorylation, translocation, and activation of PLCγ1. Although less abundant than PLCγ2, activated PLCγ1 may be responsible for the bulk of antigen-stimulated Ins(1,4,5)P3 production in RBL-2H3 cells.  相似文献   

5.
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.  相似文献   

6.
Kaposi Sarcoma-associated herpesvirus (KSHV) causes three human malignancies, Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and the plasma cell variant of multicentric Castleman’s Disease (MCD), as well as an inflammatory cytokine syndrome (KICS). Its non-structural membrane protein, pK15, is among a limited set of viral proteins expressed in KSHV-infected KS tumor cells. Following its phosphorylation by Src family tyrosine kinases, pK15 recruits phospholipase C gamma 1 (PLCγ1) to activate downstream signaling cascades such as the MEK/ERK, NFkB and PI3K pathway, and thereby contributes to the increased proliferation and migration as well as the spindle cell morphology of KSHV-infected endothelial cells. Here, we show that a phosphorylated Y481EEVL motif in pK15 preferentially binds into the PLCγ1 C-terminal SH2 domain (cSH2), which is involved in conformational changes occurring during the activation of PLCγ1 by receptor tyrosine kinases. We determined the crystal structure of a pK15 12mer peptide containing the phosphorylated pK15 Y481EEVL motif in complex with a shortened PLCγ1 tandem SH2 (tSH2) domain. This structure demonstrates that the pK15 peptide binds to the PLCγ1 cSH2 domain in a position that is normally occupied by the linker region connecting the PLCγ1 cSH2 and SH3 domains. We also show that longer pK15 peptides containing the phosphorylated pK15 Y481EEVL motif can increase the Src-mediated phosphorylation of the PLCγ1 tSH2 region in vitro. This pK15-induced increase in Src-mediated phosphorylation of PLCγ1 can be inhibited with the small pK15-derived peptide which occupies the PLCγ1 cSH2 domain. Our findings thus suggest that pK15 may act as a scaffold protein to promote PLCγ1 activation in a manner similar to the cellular scaffold protein SLP-76, which has been shown to promote PLCγ1 activation in the context of T-cell receptor signaling. Reminiscent of its positional homologue in Epstein-Barr Virus, LMP2A, pK15 may therefore mimic aspects of antigen-receptor signaling. Our findings also suggest that it may be possible to inhibit the recruitment and activation of PLCγ1 pharmacologically.  相似文献   

7.
Shao Y  Elly C  Liu YC 《EMBO reports》2003,4(4):425-431
Cbl functions as an adaptor protein by interacting with other signalling molecules to form multimolecular complexes. Previous studies have proposed that Cbl is also a positive regulator of CrkL–C3G signalling, which leads to Rap1 activation. However, there is a lack of genetic evidence for a physiological function of Cbl in regulating this pathway. Here, we show that Cbl deficiency results in enhanced activation of Rap1. Cbl was shown to promote the ubiquitylation of CrkL without any apparent effect on its stability. Remarkably, the membrane translocation of C3G, its association with CrkL, and the guanine-nucleotide exchange activity of C3G were all increased in Cbl−/− thymocytes. Consistent with a function of Rap1 in integrin activation, enhanced integrin-mediated cell adhesion was also seen in Cbl−/− thymocytes. Thus, Cbl negatively regulates Rap1 activation, probably through a proteolysis-independent E3-ubiquitin-ligase activity of Cbl that modulates protein–protein interactions.  相似文献   

8.
Cbl is an adaptor protein and an E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and is phosphorylated by Syk and Src family kinases. Phosphorylated Cbl Tyr737 creates a binding site for the p85 regulatory subunit of PI3K, which also plays an important role in the regulation of bone resorption by osteoclasts. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined the knock-in mice (CblYF/YF) in which the PI3K binding site in Cbl is ablated due to the mutation in the regulatory tyrosine. We report that in CblYF/YF mice, despite increased numbers of osteoclasts, bone volume is increased due to defective osteoclast function. Additionally, in ex vivo cultures, mature CblYF/YF osteoclasts showed an increased ability to survive in the presence of RANKL due to delayed onset of apoptosis. RANKL-mediated signaling is perturbed in CblYF/YF osteoclasts, and most interestingly, AKT phosphorylation is up-regulated, suggesting that the lack of PI3K sequestration by Cbl results in increased survival and decreased bone resorption. Cumulatively, these in vivo and in vitro results show that, on one hand, binding of Cbl to PI3K negatively regulates osteoclast differentiation, survival, and signaling events (e.g. AKT phosphorylation), whereas on the other hand it positively influences osteoclast function.  相似文献   

9.
Chiang J  Hodes RJ 《PloS one》2011,6(4):e18542
Extensive studies of pre-TCR- and TCR-dependent signaling have led to characterization of a pathway deemed essential for efficient T cell development, and comprised of a cascade of sequential events involving phosphorylation of Lck and ZAP-70, followed by phosphorylation of LAT and SLP-76, and subsequent additional downstream events. Of interest, however, reports from our lab as well as others have indicated that the requirements for ZAP-70, LAT, and SLP-76 are partially reversed by inactivation of c-Cbl (Cbl), an E3 ubiquitin ligase that targets multiple molecules for ubiquitination and degradation. Analysis of signaling events in these Cbl knockout models, including the recently reported analysis of SLP-76 transgenes defective in interaction with Vav1, suggested that activation of Vav1 might be a critical event in alternative pathways of T cell development. To extend the analysis of signaling requirements for thymic development, we have therefore assessed the effect of Cbl inactivation on the T cell developmental defects that occur in Vav1-deficient mice. The defects in Vav1-deficient thymic development, including a marked defect in DN3-DN4 transition, were completely reversed by Cbl inactivation, accompanied by enhanced phosphorylation of PLC-γ1 and ERKs in response to pre-TCR/TCR cross-linking of Vav1-/-Cbl-/- DP thymocytes. Taken together, these results suggest a substantially modified paradigm for pre-TCR/TCR signaling and T cell development. The observed consensus pathways of T cell development, including requirements for ZAP-70, LAT, SLP-76, and Vav1, appear to reflect the restriction by Cbl of an otherwise much broader set of molecular pathways capable of mediating T cell development.  相似文献   

10.
11.
Fc receptors modulate inflammatory processes, including phagocytosis, serotonin and histamine release, superoxide production, and secretion of cytokines. Aggregation of FcγRIIa, the low-affinity receptor for monomeric IgG, activates nonreceptor protein tyrosine kinases such as Lyn, Hck, and Syk, potentially driving the phosphorylation of the downstream adaptor proteins, including Cbl and/or Nck. Previous work from our laboratory using interferon-γ-differentiated U937 (U937IF) myeloid cells investigated mechanisms which regulate Fcγ receptor-induced assembly of adaptor complexes. Herein we report that FcγRII receptor signaling in U937IF and HEL cells involves Cbl and Nck, suggesting that Cbl–Nck interactions may link FcγRII to downstream activation of Pak kinase. FcγRII crosslinking induced the phosphorylation of Cbl and Nck on tyrosine. The αCbl immunoprecipitations revealed constitutive binding of Nck and Grb2 to Cbl and FcγRII-inducible binding of CrkL to Cbl. The interactions of Cbl with Nck and CrkL were phosphorylation dependent since dephosphorylation of cellular proteins with potato acid phosphatase abrogated binding. GST–Nck fusion protein pulldown experiments show that Cbl and Pak1 bind to the second SH3 domain of Nck. A specific Src inhibitor, PP1, was shown to completely abrogate the FcγR-induced superoxide response, correlating with a decrease in Cbl and Nck tyrosine phosphorylation. Our results provide the first evidence that Src is required for FcγR activation of the respiratory burst in myeloid cells and suggest that Cbl–Nck, Cbl–Pak1, and Nck–Pak1 interactions may regulate this response.  相似文献   

12.
T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. We report here that in cultured Jurkat T cells, Cbl is coprecipitated with antibody against the adapter protein Grb2. Upon activation of Jurkat T cells via the TCR-CD3 complex, we find that high-affinity binding of Cbl requires the N-terminal SH3 domain of GST-Grb2 fusion protein but after cross-linking of the TCR-CD3 and CD4 receptors, Cbl binds equally to its SH2 domain. Grb2 antisera also precipitated p85 from serum-starved cells, while TCR activation increased p85 and tyrosine-phosphorylated Cbl but not Cbl protein in Grb2 immunocomplexes. Phosphatidylinositol (PI) 3-kinase activity was immunoprecipitated from serum-starved cells with Cbl and to a lesser extent with Grb2 antisera, and TCR cross-linking increased this activity severalfold. The PI 3-kinase activity associated with Cbl amounted to 5 to 10% of the total cellular activity that could be precipitated by p85 antisera. The Ras exchange factor Son-of-sevenless 1 (Sos-1) was not found in anti-Cbl immunoprecipitates from activated cells, and Cbl was not detectable in anti-Sos-1 precipitates, supporting the likelihood that Sos-Grb2 and Cbl-Grb2 are present as distinct complexes. Taken together, these data suggest that Cbl function in Jurkat T cells involves its constitutive association with Grb2 and its recruitment of PI 3-kinase in response to TCR activation.  相似文献   

13.
Src family tyrosine kinases have previously been proposed to mediate some of the biological effects of lipopolysaccharide on macrophages. Accordingly, we have sought to identify substrates of Src family kinases in lipopolysaccharide-stimulated macrophages. Stimulation of Bac1.2F5 macrophage cells with lipopolysaccharide was found to induce gradual and persistent tyrosine phosphorylation of Cbl in an Src family kinase-dependent manner. Immunoprecipitation experiments revealed that Cbl associates with Hck in Bac1.2F5 cells, while expression of an activated form of Hck in Bac1.2F5 cells induces tyrosine phosphorylation of Cbl in the absence of lipopolysaccharide stimulation. The Src homology 3 domain of Hck can directly bind Cbl, and this interaction is important for phosphorylation of Cbl. Association of the p85 subunit of phosphatidylinositol (PI) 3-kinase with Cbl is enhanced following lipopolysaccharide stimulation of Bac1.2F5 cells, and transient expression experiments indicate that phosphorylation of Cbl by Hck can facilitate the association of p85 with Cbl. Lipopolysaccharide treatment also stimulates the partial translocation of Hck to the cytoskeleton of Bac1.2F5 cells. Notably, lipopolysaccharide enhances the adherence of Bac1.2F5 cells, an effect that is dependent on the activity of Src family kinases and PI 3-kinase. Thus, we postulate that Hck enhances the adherence of lipopolysaccharide-stimulated macrophages, at least in part, via Cbl and PI 3-kinase.  相似文献   

14.
Cbl is phosphorylated by the insulin receptor and reportedly functions within the flotillin/CAP/Cbl/Crk/C3G/TC10 complex during insulin-stimulated glucose transport in 3T3/L1 adipocytes. Cbl, via pYXXM motifs at tyrosine-371 and tyrosine-731, also activates phosphatidylinositol (PI) 3-kinase, which is required to activate atypical protein kinase C (aPKC) and glucose transport during thiazolidinedione action in 3T3/L1 and human adipocytes [Miura et al. (2003) Biochemistry 42, 14335-14341]. Presently, we have examined the importance of Cbl in activating PI 3-kinase and aPKC during insulin action in 3T3/L1 adipocytes by expressing Y371F and Y731F Cbl mutants, which nullify pYXXM binding of Cbl to SH2 domains of downstream effectors. Interestingly, these mutants inhibited insulin-induced increases in (a) binding of Cbl to both Crk and the p85 subunit of PI 3-kinase, (b) activation of Cbl-dependent PI 3-kinase, (c) activation and translocation of aPKC to the plasma membrane, (d) translocation of Glut4 to the plasma membrane, (e) and glucose transport. Importantly, coexpression of wild-type Cbl reversed the inhibitory effects of Cbl mutants. In contrast to Cbl-dependent PI 3-kinase, Cbl mutants did not significantly inhibit the activation of PI 3-kinase by IRS-1, which is also required during insulin action. Our findings suggest that (a) Cbl uses pYXXM motifs to simultaneously activate PI 3-kinase and Crk/C3G/TC10 pathways and (b) Cbl, along with IRS-1, functions upstream of PI 3-kinase and aPKCs during insulin-stimulated glucose transport in 3T3/L1 adipocytes.  相似文献   

15.
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cγ2 (PLCγ2) and Bruton''s tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b−/−) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca2+ mobilization. A parallel inhibition is found for activation of PLCγ2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCγ2. When Cbl-b−/− mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.  相似文献   

16.
Signal transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2 (SH2)-like domains as well as a YXXQ motif in its C-terminal region. Our previous study in T cells demonstrated that STAP-2 influences FAK protein levels through recruitment of E3 ubiquitin ligase, Cbl, to FAK. In the present study, we found that Cbl directly controls the protein levels and activity of STAP-2. STAP-2 physically interacted with Cbl through its PH and SH2-like domains. Small-interfering RNA-mediated reduction of endogenous Cbl restored STAP-2 protein levels. In contrast, over-expression of Cbl induced STAP-2 degradation. Importantly, Cbl-mediated regulation of STAP-2 protein levels affected Brk/STAP-2-induced STAT3 activation. These results indicate that Cbl regulates STAP-2 protein levels and Brk/STAP-2-mediated STAT3 activation.  相似文献   

17.
Role of Cbl in shear-activation of PI 3-kinase and JNK in endothelial cells   总被引:2,自引:0,他引:2  
Fluid shear stress can activate PI-3 kinase and JNK in vascular endothelial cells. This study was designed to establish the role of Cbl as an upstream molecule in the shear stress activation of PI-3 kinase and JNK. Confluent monolayers of bovine aortic endothelial cells (BAECs) were subjected to a shear stress of 12 dyn/cm(2) over intervals ranging from 0.5 to 30 min. Shear stress increased Cbl phosphorylation to 2.9-fold of control and Cbl association with the regulatory PI-3 kinase subunit p85 to 5.4-fold. The PI-3 kinase activity measured in Cbl-immunoprecipitated complexes increased to 11.7-fold in response to shear, suggesting that the shear stress activation of PI-3 kinase involves its association with Cbl. Furthermore, the shear stress induction of JNK was attenuated by a negative mutant of Cbl. Finally, shear stress caused an activation of PI 3-kinase only in BAECs seeded onto fibronectin, vitronectin, or laminin, but not poly-l-lysine. Our results suggest that Cbl plays a critical role in the shear stress induction of PI 3-kinase and JNK activities, and that this shear-induced activation requires the interaction of endothelial integrins with extracellular matrix proteins.  相似文献   

18.
19.
PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca2+-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca2+-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca2+-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca2+ levels to ∼400 or ∼800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K+ preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K+ preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K+ but not with 56 mm K+ activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca2+-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca2+-dependent regulator of F-actin dynamics and vesicle trafficking.  相似文献   

20.
Phagocytosis mediated by FcgammaR plays an important role in host defense. The molecular events involved in this process have not been completely defined. The adapter protein Cbl has been implicated in FcgammaR signaling, but the function of Cbl in phagocytosis is unknown. Here we show that overexpression of the transforming mutants of Cbl, Cbl-70Z, and v-Cbl, but not wild-type (wt) Cbl, enhance phagocytosis mediated by FcgammaR in COS cells. Cbl-70Z, but not Cbl-wt, also enhanced FcgammaR-mediated phagocytosis in P388D1 murine macrophage cells. Cbl-70Z did not affect tyrosine phosphorylation or in vitro kinase activity of Syk, indicating that Syk may not be the direct target of Cbl-70Z in the enhancement of phagocytosis. A point mutation (G306E) in the phosphotyrosine domain of Cbl-70Z, as well as a C-terminal 67-aa deletion, partially abolished the enhancing effect on FcgammaR-mediated phagocytosis. A double mutant of Cbl-70Z containing both the G306E mutation and the C-terminal deletion completely lacked the ability to enhance phagocytosis. Thus, both the phosphotyrosine binding domain and the carboxyl-terminal tail were required for optimal enhancement of phagocytosis by Cbl-70Z. Functional phosphatidylinositol 3-kinase was required for Cbl-70Z to enhance phagocytosis, since wortmannin, a phosphatidylinositol 3-kinase inhibitor, inhibited FcgammaR-mediated phagocytosis in the presence of Cbl-70Z. These studies demonstrate that mutants of Cbl can modulate the phagocytic pathway mediated by FcgammaR and imply a functional involvement of c-Cbl in Fcgamma receptor-mediated phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号