首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src homology 2 (SH2) domains have an important role in the regulation of protein activity and intracellular signaling processes. They are geared to bind to specific phosphotyrosine (pY) motifs, with a substrate sequence specificity depending on the three amino acids immediately C-terminal to the pY. Here we report for the first time the 1H, 15N and 13C backbone and side-chain chemical shift assignments for the C-terminal SH2 domain of the human protein tyrosine phosphatase PTPN11, both in its free and bound forms, where the ligand in the latter corresponds to a specific sequence of the human erythropoietin receptor.  相似文献   

2.
Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin''s lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.  相似文献   

3.
The two SH3 domains and one SH2 domain containing adaptor protein Grb2 is an essential element of the Ras signaling pathway in multiple systems. The SH2 domain of Grb2 recognizes and interacts with phosphotyrosine residues on activated tyrosine kinases, whereas the SH3 domains bind to several proline‐rich domain‐containing proteins such as Sos1. To define the difference in Grb2‐associated proteins in hepatocarcinoma cells, we performed coprecipitation analysis using recombinant GST‐Grb2 fusion proteins and found that several protein components (p170, p125, p100, and p80) differently associated with GST‐Grb2 proteins in human Chang liver and hepatocarcinoma HepG2 cells. Sos1 and p80 proteins dominantly bind to Grb2 fusion proteins in Chang liver, whereas p100 remarkably associate with Grb2 in HepG2 cells. Also GST‐Grb2 SH2 proteins exclusively bound to the p46Shc, p52Shc, and p66Shc are important adaptors of the Ras pathway in HepG2 cells. The p100 protein has been identified as dynamin II. We observed that the N‐SH3 and C‐SH3 domains of Grb2 fusion proteins coprecipitated with dynamin II besides Sos1. These results suggest that dynamin II may be a functional molecule involved in Grb2‐mediated signaling pathway on Ras activation for tumor progression and differentiation of hepatocarcinoma cells. J. Cell. Biochem. 84: 150–155, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

4.
We developed peptide probes containing a non-hydrolyzable phosphotyrosine mimetic, 4-[difluoro(phosphono)methyl]-L-phenylalanine (F2Pmp) for the enrichment of protein tyrosine phosphatases (PTPs). We found that different F2Pmp probes can enrich different PTPs, depending on the probe sequence. Furthermore, proteins containing a Src homology 2 (SH2) domain were enriched together. Importantly, probes containing phosphotyrosine instead of F2Pmp failed to enrich PTPs due to dephosphorylation during the pulldown step. This enrichment approach using peptides containing F2Pmp could be a generic tool for tyrosine phosphatome analysis without the use of antibodies.  相似文献   

5.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.  相似文献   

6.
C‐terminal Src kinase (Csk) that functions as an essential negative regulator of Src family tyrosine kinases (SFKs) interacts with tyrosine‐phosphorylated molecules through its Src homology 2 (SH2) domain, allowing it targeting to the sites of SFKs and concomitantly enhancing its kinase activity. Identification of additional Csk‐interacting proteins is expected to reveal potential signaling targets and previously undescribed functions of Csk. In this study, using a direct proteomic approach, we identified 151 novel potential Csk‐binding partners, which are associated with a wide range of biological functions. Bioinformatics analysis showed that the majority of identified proteins contain one or several Csk‐SH2 domain‐binding motifs, indicating a potentially direct interaction with Csk. The interactions of Csk with four proteins (partitioning defective 3 (Par3), DDR1, SYK and protein kinase C iota) were confirmed using biochemical approaches and phosphotyrosine 1127 of Par3 C‐terminus was proved to directly bind to Csk‐SH2 domain, which was consistent with predictions from in silico analysis. Finally, immunofluorescence experiments revealed co‐localization of Csk with Par3 in tight junction (TJ) in a tyrosine phosphorylation‐dependent manner and overexpression of Csk, but not its SH2‐domain mutant lacking binding to phosphotyrosine, promoted the TJ assembly in Madin‐Darby canine kidney cells, implying the involvement of Csk‐SH2 domain in regulating cellular TJs. In conclusion, the newly identified potential interacting partners of Csk provided new insights into its functional diversity in regulation of numerous cellular events, in addition to controlling the SFK activity.  相似文献   

7.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3src. Co-expression of activated Src (pp60527F) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 a nd stable complex formation with pp60527F. However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60527F revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60527F, unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60527F. (Mol Cell Biochem 175: 243–252, 1997)  相似文献   

8.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

9.
Oncogenes,protein tyrosine kinases,and signal transduction   总被引:1,自引:0,他引:1  
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of thesrc homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs.  相似文献   

10.
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases.Src homology 2 (SH2) domains are modular protein structures that are important for signal transduction due to their ability to bind phosphotyrosine (pY)-containing polypeptides within defined amino acid sequence motifs (1). SH2 domains are found in various signaling enzymes and adaptor proteins. Given the reversibility of protein tyrosine phosphorylation and the affinity of SH2-pY binding, the interactions of SH2 domains are inherently dynamic and diverse. Indeed, selective, transient binding to pY motifs is a key mechanism through which intracellular signaling networks are dynamically assembled, localized, and regulated. In addition to mediating protein interactions in trans, SH2 domains bind intramolecularly (2). For example, in Src family kinases (SFKs), the SH2 domain binds in cis to the phosphorylated C-terminal tail as a mechanism to constrain and thereby auto-inhibit the intervening tyrosine kinase domain (3, 4). As well, SH2 domains of cytoplasmic tyrosine kinases have been shown to affect the kinase activity of adjacent kinase domains through allosteric interactions (5). The SFKs are therefore highly regulated as a function of their SH2 domains, which exist in dynamic equilibrium between intra- and intermolecular interactions (6). Hence, as discussed by Pawson (7), the transient and diverse interactions of an SH2 domain can regulate signaling enzymes and constitutes a major mechanism of signal transduction in response to extracellular signals.The structure of the SH2 domain has been extensively characterized. At its core is a conserved antiparallel β-sheet sandwiched between two α-helices (8). SH2 domains bind phosphotyrosine-containing peptides in an extended conformation across the central β-sheet, with the pY residue inserted in a deep recognition pocket formed by conserved residues from strands βB, βC, and βD, helix αA, and the phosphate binding loop. Peptide binding specificity is determined by more variable binding surfaces on the SH2 domain, which recognize residues C-terminal to the pY residue. For the SFK SH2 domains, the three residues C-terminal to the pY residue (pY+1,+2,+3) are dominant determinants of specificity (9, 10), with the domain binding most tightly to sequences containing the motif pYEEI (11, 12). The hydrophobic pY+3 residue inserts in a deep hydrophobic specificity pocket defined by residues of the EF and BG loops (8, 13, 14). Indeed, structural analysis of the SH2 domain revealed that the configuration of the EF and BG loops is critical in dictating SH2 domain specificity by shaping the ligand-binding surface and controlling accessibility of the pY+3 binding pocket (15). Mutation of a single residue of the EF loop can drastically impact peptide binding specificity by altering the pY+3 pocket (1517), indicating the importance of the pY+3 pocket in substrate selectivity for the SFK SH2 domains.In addition to binding pY-containing polypeptides, SH2 domains themselves may be modulated by phosphorylation. For example, phosphorylation of the Src SH2 domain at conserved Y213 resulted in activation of the cognate kinase domain, possibly by impairing SH2 binding to the phosphorylated C-terminal tail (18). Similarly, phosphorylation of Lck at the equivalent SH2 residue (Y192) generally reduced binding to pY-peptides and proteins (19). Phosphorylation at S690 in the SH2 domain of the p85α subunit of PI 3-kinase decreased its affinity for pY-containing proteins and promoted feedback inhibition of PI 3-kinase and Akt in response to cellular starvation (20). Conversely, tyrosine phosphorylation of the tensin-3 SH2 domain stimulated substrate binding and biological activity (21). Therefore, phosphorylation of SH2 domains appears to be a general mechanism for modulating their binding properties.Here, we report that Y194 in the SH2 domain of the SFK Lyn, a residue conserved in SFK SH2 domains, is frequently phosphorylated in hematopoietic and other cancers. In vitro protein and peptide interactions with the Lyn SH2 domain were affected by this phosphorylation. Our results suggest that tyrosine phosphorylation of the SFK SH2 domain modulates both its binding affinity and specificity and may constitute another layer of regulation in signaling networks.  相似文献   

11.
Crkl is an adapter protein and phosphotyrosine-containing substrate implicated in transformation by the bcr-abl oncogene and in signaling by cytokines. When phosphorylated, Crkl binds through its Src homology 2 (SH2) domain to other tyrosine phosphoproteins such as paxillin and Cbl. Overexpression of Crkl in fibroblasts induces transformation. Here we examine the role of Crkl in hematopoietic cells and find that overexpression of Crkl confers a signal leading to increased adhesion to fibronectin. In both fibroblasts and hematopoietic cells, individual mutations or deletions of each SH2 and SH3 domain abrogated transformation and adhesion, respectively, indicating that interactions with other proteins such as Cbl and paxillin (SH2 domain) and Abl, Sos, and C3G (N-terminal SH3 domain) are essential for biological activity. In vivo and in vitro tryptic phosphopeptide mapping studies show that Crkl is phosphorylated on multiple tyrosine residues when overexpressed or when activated by Bcr-Abl. Mutation at tyrosine 207, a residue conserved in c-Crk, abrogates all in vivo tyrosine phosphorylation of Crkl. Despite this loss of phosphotyrosine, mutation at this site enhanced Crkl function as measured by complex formation with SH2 binding proteins, signal transduction to Jun Kinase, and fibroblast transformation. These observations implicate Crkl in cellular adhesion and demonstrate that Y207 functions as a negative regulatory site.  相似文献   

12.
Although inositol trisphosphate (IP3) functions in releasing Ca2+ in eggs at fertilization, it is not known how fertilization activates the phospholipase C that produces IP3. To distinguish between a role for PLCγ, which is activated when its two src homology-2 (SH2) domains bind to an activated tyrosine kinase, and PLCβ, which is activated by a G protein, we injected starfish eggs with a PLCγ SH2 domain fusion protein that inhibits activation of PLCγ. In these eggs, Ca2+ release at fertilization was delayed, or with a high concentration of protein and a low concentration of sperm, completely inhibited. The PLCγSH2 protein is a specific inhibitor of PLCγ in the egg, since it did not inhibit PLCβ activation of Ca2+ release initiated by the serotonin 2c receptor, or activation of Ca2+ release by IP3 injection. Furthermore, injection of a PLCγ SH2 domain protein mutated at its phosphotyrosine binding site, or the SH2 domains of another protein (the phosphatase SHP2), did not inhibit Ca2+ release at fertilization. These results indicate that during fertilization of starfish eggs, activation of phospholipase Cγ by an SH2 domain-mediated process stimulates the production of IP3 that causes intracellular Ca2+ release.  相似文献   

13.
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993)  相似文献   

14.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

15.
The literature data on the role of IRS1/IRS2 proteins, endogenous substrates for insulin receptor tyrosine kinase, in transduction of signals generated by insulin superfamily peptides (insulin, insulin-like growth factor) were analyzed. The molecular mechanisms of the functional coupling of IRS proteins with peptide receptors possessing a tyrosine kinase activity and SH2 domain-containing proteins (phosphatidylinositol 3-kinase, Grb2 adaptor protein, protein phosphotyrosine phosphatase) were discussed. The structural and functional properties of IRS proteins (distribution of functional domains and sites for tyrosine phosphorylation; conservatism of amino acid sequences) were characterized. The data on the alternative pathways of transduction of signals which are generated by insulin and related peptides and do not involve IRS proteins were analyzed. These pathways are realized through Shc proteins or via direct interaction between receptors and SH2 proteins. Amino acid sequences of IRS proteins and insulin superfamily tyrosine kinase receptors were compared. The homologous regions in IRS proteins and receptors, which can be responsible for their coupling with phosphatidylinositol 3-kinase and protein phosphotyrosine phosphatases, were identified.  相似文献   

16.
17.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

18.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2, also referred to SH3BP2) regulates immune receptor-mediated signal transduction. In this report we focused on the molecular mechanism of 3BP2 function in B cell receptor (BCR) signaling. Engagement of BCR induces tyrosine phosphorylation of 3BP2. Genetic analysis demonstrated that Syk is critical for BCR-mediated tyrosine phosphorylation of 3BP2. Mutational analysis of 3BP2 revealed that both Tyr183 and Src homology 2 (SH2) domain are necessary for 3BP2-mediated BCR-induced activation of nuclear factor of activated T cells (NFAT). Point mutation of Tyr183 or Arg486 in the SH2 domain of 3BP2 diminished BCR-mediated tyrosine phosphorylation of 3BP2. Endogenous 3BP2 forms a complex with tyrosine-phosphorylated cellular signaling molecules. Peptide binding experiments demonstrated that only phosphorylated Tyr183 in 3BP2 could form a complex with the SH2 domain(s) of phospholipase Cγ2 and Vav1 from B cell lysates. These interactions were represented by using bacterial glutathione S-transferase-phospholipase Cγ2 or -Vav1 SH2 domain. Furthermore, pulldown and Far Western experiments showed that the 3BP2-SH2 domain directly binds to B cell linker protein (BLNK) after BCR stimulation. These results demonstrated that 3BP2 induces the protein complex with cellular signaling molecules through phosphorylation of Tyr183 and SH2 domain leading to the activation of NFAT in B cells.  相似文献   

19.
The occlusion of capillary vessels results in low oxygen tension in adjacent tissues which triggers a signaling cascade that culminates in neovascularization. Using bovine retinal capillary endothelial cells (BRCEC), we investigated the effects of short-term hypoxia on DNA synthesis, phosphotyrosine induction, changes in the expression of basic fibroblast growth factor receptor (bFGFR), protein kinase C (PKCα), heat shock protein 70 (HSP70), and SH2-containing protein (SHC). The effect of protein tyrosine kinase (PTK) and phosphatase inhibitors on hypoxia-induced phosphotyrosine was also studied. Capillary endothelial cells cultured in standard normoxic (pO2 = 20%) conditions were quiesced in low serum containing medium and then exposed to low oxygen tension or hypoxia (pO2 = 3%) in humidified, 5% CO2, 37°C, tissue culture chambers, on a time-course of up to 24 h. DNA synthesis was potentiated by hypoxia in a time-dependent manner. This response positively correlated with the cumulative induction of phosphotyrosine and the downregulation of bFGFR (Mr ~ 85 kDa). Protein tyrosine kinase inhibitors, herbimycin-A, and methyl 2,5-dihydroxycinnamate, unlike genistein, markedly blocked hypoxia-induced phosphotyrosine. Prolonged exposure of cells to phosphatase inhibitor, sodium orthovanadate, also blocked hypoxia-induced phosphotyrosine. The expression of HSP70, PKCα, and SHC were not markedly altered by hypoxia. Taken together, these data suggest that short-term hypoxia activates endothelial cell proliferation in part via tyrosine phosphorylation of cellular proteins and changes in the expression of the FGF receptor. Thus, endothelial cell mitogenesis and neovascularization associated with low oxygen tension may be controlled by abrogating signaling pathways mediated by protein tyrosine kinase and phosphatases. © 1995 Wiley-Liss, Inc.  相似文献   

20.
SH2 domains are protein modules which bind tyrosine phosphorylated sequences in many signaling pathways. These domains contain two regions with specialized functions: residues in one region form a deep pocket into which the phosphotyrosine of the target inserts, while the other region contains the so-called "specificity determining residues" which interact with the three residues C-terminal to the phosphotyrosine in the target. Here, titration calorimetry and site-directed mutagenesis have been used to probe the importance of eight specificity determining residues of the SH2 domain of the Src kinase involved in contacts with its tyrosine phosphorylated consensus peptide target (sequence pYEEI where pY indicates a phosphotyrosine). Mutating six of these eight residues to Ala individually, resulted in a threefold or less loss in binding affinity; hence the majority of the residues in the specificity determining region are by themselves of minimal importance for binding. Two residues were found to have significant effects on binding: Tyr betaD5 and Lys betaD3. Tyr betaD5 was the most crucial residue as evidenced by the 30-fold loss in affinity when Tyr betaD5 is mutated to Ile. However, while this mutation eliminated the specificity of the Src SH2 domain for the pYEEI peptide sequence, it was not sufficient to switch the specificity of the Src SH2 domain to that of a related SH2 domain which has an Ile at the betaD5 position. Mutation of Lys betaD3 to an Ala residue resulted in a modest reduction in binding affinity (sevenfold). It is interesting that this mutation resulted in a change of specificity affecting the selection of the +1 position residue C-terminal to the phosphotyrosine. Except for the Lys betaD3-+1 Glu interaction which is significantly coupled, only weak energetic coupling was observed across the binding interface, as assessed using double mutant cycles. The results of this study suggest that interactions involving the specificity determining region of SH2 domains may be insufficient by themselves to target single SH2 domains to particular phosphorylated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号