首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin binding to the Fas death domain. Regulation by Fas activation   总被引:3,自引:0,他引:3  
Fas (APO-1/CD95) is a cell surface receptor that initiates apoptotic pathways, and its cytoplasmic domain interacts with various molecules suggesting that Fas signaling is complex and regulated by multiple proteins. Calmodulin (CaM) is an intracellular Ca(2+)-binding protein, and it mediates many of the effects of Ca2+. Here, we demonstrate that CaM binds to Fas directly and identify the CaM-binding site on the cytoplasmic death domain (DD) of Fas. Fas binds to CaM-Sepharose and is co-immunoprecipitated with CaM. Other death receptors, such as tumor necrosis factor receptor, DR4, and DR5 do not bind to CaM. The interaction between Fas and CaM is Ca(2+)-dependent. Deletion mapping analysis with various GST-fused Fas cytoplasmic domain fragments revealed that the fragment containing helices 1, 2, and 3 of the Fas DD has the CaM-binding ability. Sequence analysis of this fragment predicted a potential CaM-binding site in helix 2 and connected loops. A valine 254 to asparagine mutation in this region, which is analogous to the identified mutant allele of Fas in lpr mice that have a deficiency in Fas-mediated apoptosis, showed reduced CaM binding. Computer modeling of the interaction between CaM and helix 2 of the Fas DD predicted that amino acids, which are important for Fas-CaM binding, and point mutations of these amino acids caused reduced Fas-CaM binding. The interaction between Fas and CaM is increased approximately 2-fold early upon Fas activation (at 30 min) and is decreased to approximately 50% of control at 2 h. These findings suggest a novel function of CaM in Fas-mediated apoptosis.  相似文献   

2.
Different isoforms of serotonin subtype 2C receptor (5-HT(2C)R) with altered G protein-coupling efficacy are generated by RNA editing, which converts genomically encoded adenosine residues into inosines. In combination, editing of five sites all located within the second intracellular loop region of 5-HT(2C)R mRNA changes the gene-encoded Ile, Asn, and Ile at positions 156, 158, and 160, respectively. We analyzed the G protein-coupling functions of previously unreported editing isoform receptors. An approximately 13-fold reduction in the agonist potency for G protein-coupling stimulation as well as a significantly reduced basal level activity was observed with the thalamus-specific isoform carrying Ile156, Gly158, and Val160 (5-HT(2C)R-IGV). In contrast, the agonist was four- to five-fold less potent with 5-HT(2C)R-MSV and -IDV, detected in the amygdala and choroid plexus, respectively, indicating a dominant role for the amino acid residue at position 158 in receptor functions. We also identified a splicing variant receptor with a truncated C terminus that displayed no ligand binding capacity or G protein-coupling activity. Examination of the alternatively spliced RNA encoding this truncated receptor suggests that editing of this variant RNA occurs after completion of splicing, resulting in complete editing at all five sites.  相似文献   

3.
Calmodulin binding to human spectrin   总被引:1,自引:0,他引:1  
Human hepatocellular carcinoma cells (Hep G2) were shown to secrete apo A-I as a proprotein . No apo A-I synthesis could be detected with endothelial cells from human umbilical cord veins. Conversion of proapo A-I into apo A-I is a slow (of the order of hours) process, mediated by a Ca2+/Mg2+-dependent enzyme which is present on the surface of plasma lipoprotein particles, endothelial cells and Hep G2 cells, and is probably synthesized by Hep G2 cells.  相似文献   

4.
Superoxide generated by NADPH Oxidase 5 (Nox5) is regulated by Ca2+ through the interaction of its self-contained Ca2+ binding domain and dehydrogenase domain (DH). Recently, calmodulin (CaM) has been reported to enhance the Ca2+ sensitivity of Nox5 by binding to the CaM-binding domain sequence (CMBD), in which the interaction between CaM and Nox5 is largely unclear. Here, we used the CMBD peptide and truncated DH constructs, and separately studied their interaction with CaM by fluorescence, calorimetry, and dynamic light scattering. Our results revealed that each half-domain of CaM binds one CMBD peptide with a binding constant near 106 M-1 and a binding enthalpy change of ?3.81 kcal/mol, consistent with an extended 1:2 CaM:CMBD structure. However, the recombinant truncated DH proteins exist as oligomers, possibly trimer and tetramer. The oligomeric states are concentration and salt dependent. CaM binding appears to stabilize the DH dimer complexed with CaM. The thermodynamics of CaM binding to the DH is comparable to the peptide-based study except that the near unity binding stoichiometry and a large conformational change were observed. Our result suggests that the oligomeric states of Nox5, mediated by its DH domain and CaM, may be important for its superoxide-generating activity.  相似文献   

5.
6.
In order to specifically direct cytotoxic agents against tumor cells bearing delta opioid receptors, the DNA intercalating agents ellipticine and 9-OH-ellipticine were coupled by quaternarization of the pyridine nitrogen to an enkephalin modified pentapeptide through a short chemical linker. The ellipticine ring of these conjugates was shown to intercalate into DNA, with DNA affinity constants close to those of the non-conjugated ellipticines. Despite the addition of a polycyclic ring to the C-terminal amino acid, the D-Ala2-D-Leu5-enkephalin-ellipticine conjugates bind to the opioid receptor from rat brain and NG 108-15 cells with an affinity constant close to 10(8) M-1. Other derivatives were synthesized as a control using a tripeptide which does not bind to the opioid receptor.  相似文献   

7.
Calmodulin copurifies with platelet plasma membranes isolated by glycerol-induced lysis and density gradient centrifugation. These membranes also bind 125I-labeled calmodulin in vitro in the presence of Ca2+. Binding is largely reduced by replacing Ca2+ by Mg2+ or by addition of an excess unlabeled calmodulin. The specific component of binding is saturable, with an apparent Kd of 27 nM and a maximum of 15.9 pmol binding sites per mg of membrane protein. This is equivalent to approx. 4100 binding sites per platelet. Binding was inhibited by addition of phenothiazines, a group of calmodulin antagonists. Half-maximal inhibition was attained with approx. 20 μM trifluoperazine or 50 μM chlorpromazine. In contrast, chlorpromazine-sulfoxide which is inactive towards calmodulin, did not affect the binding. Calmodulin binding polypeptides of the plasma membrane were identified by a gel-overlay technique. A major calmodulin-binding component of molecular weight 149 000 was detected. Binding to this band was Ca2+-dependent and inhibited by chlorpromazine. The molecular weight of this polypeptide is similar to that of glycoprotein I and also that of the red cell (Ca2+ + Mg2+)-stimulated ATPase, which is known to bind calmodulin. The possible role of calmodulin in platelet activation is analysed.  相似文献   

8.
[3H]Naltrindole binding characteristics were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C measured an equilibrium dissociation constant (Kd) value of 37.0 +/- 3.0 pM and a receptor density (Bmax) value of 63.4 +/- 2.0 fmol/mg protein. Association binding studies showed that equilibrium was reached within 90 min at a radioligand concentration of 30 pM. Naltrindole, as well as the ligands selective for delta (delta) opioid receptors, such as pCI-DPDPE and Deltorphin II inhibited [3H]naltrindole binding with nanomolar IC50 values. Ligands selective for mu (mu) and kappa (kappa) opioid receptors were only effective in inhibiting [3H]naltrindole binding at micromolar concentrations. From these data, we conclude that [3H]naltrindole is a high affinity, selective radioligand for delta opioid receptors.  相似文献   

9.
A series of phenylpropyloxyethylamines and cinnamyloxyethylamines were synthesized as deconstructed analogs of 14-phenylpropyloxymetopon and analyzed for opioid receptor binding affinity. Using the Conformationally Sampled Pharmacophore modeling approach, we discovered a series of compounds lacking a tyrosine mimetic, historically considered essential for μ opioid binding. Based on the binding studies, we have identified the optimal analogs to be N-methyl-N-phenylpropyl-2-(3-phenylpropoxy)ethanamine, with 1520 nM, and 2-(cinnamyloxy)-N-methyl-N-phenethylethanamine with 1680 nM affinity for the μ opioid receptor. These partial opioid structure analogs will serve as the novel lead compounds for future optimization studies.  相似文献   

10.
The reaction of opioid peptides with mushroom tyrosinase in the presence of an excess of a thiol compound gives rise to cysteinyldopaenkephalins (CDEnks). The major product is represented by the 5-S-CDEnk (80%) and the minor one by the isomer 2-S-CDEnk (20%). The adducts between leucine-enkephalin (Leu-enk) and cysteine have been isolated by high performance liquid chromatography (HPLC) and identified by amino acid analysis and electrospray ion mass spectrometry. 5-S-CDEnk is able to bind to opioid receptors in bovine brain membranes. Its binding affinity is higher for delta than for mu receptors and about 8-fold lesser than that exploited by Leu-enk. In the presence of the peroxidase/H(2)O(2) system, CDEnks can be converted into the corresponding pheo-opiomelanins.  相似文献   

11.
J A Porter  B Minke    C Montell 《The EMBO journal》1995,14(18):4450-4459
The ninaC locus encodes two unconventional myosins, p132 and p174, consisting of fused protein kinase and myosin head domains expressed in Drosophila photoreceptor cells. NinaC are the major calmodulin-binding proteins in the retina and the NinaC-calmodulin interaction is required for the normal subcellular localization of calmodulin as well as for normal photo-transduction. In the current report, we present evidence for two calmodulin-binding sites in NinaC, C1 and C2, which have different in vitro binding properties. C1 was found to be common to both p132 and p174 while C2 was unique to p174. To address the requirements for calmodulin binding at each site in vivo, we generated transgenic flies expressing ninaC genes deleted for either C1 or C2. We found that the spatial localization of calmodulin depended on binding to both C1 and C2. Furthermore, mutation of either site resulted in a defective photoresponse. A prolonged depolarization afterpotential (PDA) was elicited at lower light intensities than necessary to produce a PDA in wild-type flies. These results suggest that calmodulin binding to both C1 and C2 is required in vivo for termination of phototransduction.  相似文献   

12.
CD and fluorescence spectroscopic measurements show that calmodulin (CaM) binds to purothionins (alpha 1-purothionin: alpha 1-PT; beta-purothionin: beta-PT) in 1:1 stoichiometry with an affinity similar to that exhibited with the tightest binding CaM-binding peptides. Using the available crystal structures of CaM and alpha 1-PT, a model has been built for the interaction of CaM and alpha 1-PT and subjected to potential energy minimization. In the model, there is a bend in the central helix of CaM similar to that suggested by Persechini and Kretsinger (J. Card. Pharm. 12:501-512, 1988). alpha 1-PT fits snugly into the cavity formed by the bent CaM molecule with each of its two helices making apolar interactions with each of the two hydrophobic clefts situated at the terminal domains of CaM. The complex is further stabilized by numerous polar and electrostatic interactions on the rims of the clefts. Our model is compared with two other similar models previously reported for the CaM complexes with other helical peptides and generalizations about the mode of CaM binding to target proteins are made, which have wide relevance to the function of CaM. By analogy, a similar model is predicted for a CaM-beta-PT complex.  相似文献   

13.
Mu-opioid receptor (MOR) and opioid receptor-like receptor (ORL-1) circuits in the limbic hypothalamic system are important for the regulation of sexual receptivity in the female rat. Sexual receptivity is tightly regulated by the sequential release of estrogen and progesterone from the ovary suggesting ovarian steroids regulate the activity of these neuropeptide systems. Both MOR and ORL-1 distributions overlap with the distribution of estrogen and progesterone receptors in the hypothalamus and limbic system providing a morphological substrate for interaction between steroids and the opioid circuits in the brain. Both MOR and ORL-1 are receptors that respond to activation by endogenous ligands with internalization into early endosomes. This internalization is part of the mechanism of receptor desensitization or down regulation. Although receptor activation and internalization are separate events, internalization can be used as a temporal measure of circuit activation by endogenous ligands. This review focuses on the estrogen and progesterone regulation of MOR and ORL-1 circuits in the medial preoptic nucleus and ventromedial nucleus of the hypothalamus that are central to modulating sexual receptivity.  相似文献   

14.
Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of 125I-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for 125I-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. 125I-M110 and 125I-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL (ID50 = 0.44 nM) was comparable to that of 125I-oPRL by unlabeled oPRL (ID50 = 0.35 nM), while 125I-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82. These findings indicate that monoclonal antibodies can be readily prepared from partially purified PRL receptors from rabbit mammary gland; two antibodies (M110 and A82) are hormone binding site specific while the other (A917) binds a domain partially but not entirely distinct from the hormone binding site, and that all three antibodies have strong species specificity.  相似文献   

15.
Many membrane receptors are made of a ligand binding domain and an effector domain mediating intracellular signaling. This is the case for the metabotropic glutamate-like G-protein-coupled receptors. How ligand binding leads to the active conformation of the effector domain in such receptors is largely unknown. Here, we used an evolutionary trace analysis and mutagenesis to identify critical residues involved in the allosteric coupling between the Venus flytrap ligand binding domain (VFT) and the heptahelical G-protein activating domain of the metabotropic glutamate-like receptors. We have shown that a conserved interdomain disulfide bridge is required for this allosteric interaction. Taking into account that these receptors are homodimers, this finding provides important new information explaining how the different conformations of the dimer of VFT lead to different signaling of such dimeric receptors.  相似文献   

16.
125I-beta-Endorphin (human) binds with high affinity, specificity, and saturability to rat brain and neuroblastoma X glioma hybrid cell (NG 108-15) membranes. Dissociation constants and binding capacities were obtained from Scatchard plots and are 2 nM and 0.62 pmol/mg of protein for rat whole brain and 6 nM and 0.8 pmol/mg of protein for NG 108-15 cells. Results from competition experiments also indicate that this ligand interacts with high affinity with both mu and delta opioid binding sites, with a slight preference for mu sites, while exhibiting low affinity at kappa sites. We have demonstrated that human 125I-beta-endorphin is a useful probe for the investigation of the subunit structure of opioid receptors. The specific cross-linking of this ligand has revealed the presence of four reproducible bands or areas after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography at 65, 53, 38, and 25 kDa. All labeled bands seem to be opioid receptor related since they are eliminated when binding is carried out in an excess of various opiates. The evidence we have obtained using rat whole brain (delta congruent to mu), rat thalamus (largely mu), bovine frontal cortex (delta:mu congruent to 2:1), and NG 108-15 cells (delta) demonstrates that different labeling patterns are obtained when mu and delta binding sites are cross-linked. The pattern obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from cross-linked mu sites contains a major (heavily labeled) component of 65 kDa and a minor component of 38 kDa, while patterns from delta sites contain a major labeled component of 53 kDa. This 53-kDa band appears clearly in extracts from NG 108-15 cells and bovine frontal cortex, while in rat whole brain a diffusely labeled region is present between 55 and 41 kDa. In addition, NG 108-15 cells also display a minor labeled component at 25 kDa. The relationship of the minor bands to the major bands is not clear.  相似文献   

17.
The opioid nature of kentsin (Thr-Pro-Arg-Lys) and its ability to alter pain perception and intestinal transit were examined. Kentsin (30,000 nM) did not inhibit electrically stimulated contractions of the guinea pig ileum (GPI) or mouse vas deferens (MVD), nor did it cause a rightward displacement of the inhibitory concentration-response curves of the mu-selective opioid agonist PL017 in the GPI or the delta-selective agonist DPDPE in the MVD. Kentsin (10,000 nM) did not displace [3H] naloxone from rat brain homogenates. These results indicate that kentsin lacks opioid agonist and mu and delta opioid antagonist properties and does not bind to opioid receptors. In vivo, kentsin produced dose-dependent analgesia in both the hotplate and abdominal stretch tests when administered intracerebroventricularly (ICV) and intrathecally but not intravenously. The central analgesic effect of kentsin was partially antagonized by the opioid antagonist naloxone. Kentsin inhibited intestinal transit in a dose-dependent manner after ICV administration only. The intestinal antitransit effect of kentsin was not blocked by pretreatment with naloxone. These results suggest that kentsin acts centrally to produce both opioid and non-opioid effects. Further, the opioid-mediated analgesic effects of kentsin involve mechanisms other than direct interaction with opioid receptors.  相似文献   

18.
脑型一氧化氮合成酶的钙调蛋白结合区的表达及活性鉴定   总被引:1,自引:0,他引:1  
用PCR法克隆出nNOS的CaM结合区基因(nNOS 2455~2988bp),并在大肠杆菌中进行了高效表达。经金属离子螯合亲和层析得到纯度为90%以上的重组蛋白.分子量为22kDa,CaM Oveday assay证实该蛋白具有CaM的结合活性。由于所表达的重组蛋白既具有序列特异性又具有CaM的结合活性.因此。可将它作为筛选nNOS特异性抑制肽的靶蛋白,亦可用于特异性抗体的制备。  相似文献   

19.
Monoclonal anti-idiotypic antibodies to opioid receptors   总被引:3,自引:0,他引:3  
Two monoclonal anti-idiotypic antibodies (anti-Id-135 and anti-Id-14, both of the IgM class) which interact with the binding site of opioid receptors were generated. A monoclonal anti-beta-endorphin antibody (3-E7) which displays binding characteristics for opioid ligands similar to opioid receptors served as the antigen (Gramsch, C., Meo, T., Riethmüller, G., and Herz, A., (1983) J. Neurochem. 40, 1220-1226; Meo, T., Gramsch, C., Inan, R., H?llt, V., Weber, E., Herz, A., and Riethmüller, G. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4048-4088) and the hybridomas obtained were screened for anti-idiotypic antibodies with Fab fragments of 3-E7. The anti-idiotypes were then screened for opioid binding to rat brain membrane receptors, yielding several positive clones two of which were more intensively studied. Both anti-idiotypic antibodies were about equally potent in displacing the mu- and delta-opioid receptor ligands [3H]dihydromorphine, 125I-labeled beta-endorphin, [D-Ala2, D-Leu5-3H]enkephalin and [3H]naloxone from rat brain membrane opioid receptors; no interaction was observed with the kappa-ligands [3H]ethylketazocine or [3H]bremazocine. The anti-idiotypic antibodies were able to precipitate [3H] diprenorphine binding sites from solubilized opioid receptor preparations. In addition, both antibodies showed opioid antagonistic properties as demonstrated by their abilities to block the inhibitory effect of [D-Ala2, D-Leu5-3H]enkephalin on prostaglandin E1-stimulated cAMP accumulation in NG 108-15 hybrid cells. Our findings demonstrate the successful generation of monoclonal antibodies interacting with membrane-bound and solubilized opioid receptors of the mu- and delta-type.  相似文献   

20.
R I Cone  S Rosenfeld  J Lameh  W Sadée 《Life sciences》1992,51(22):PL219-PL224
The mouse neuroblastoma x rat glioma hybrid NG108-15 was previously shown to express delta opioid receptors. Because neuroblastoma cells display different phenotypes and cloned cell lines are heterogenous, we studied the characteristics and distribution of human 125I-beta-endorphin (125I-beta E) binding sites in cultures of NG108-15 cells with the use of micro-autoradiography and light microscopy. 125I-beta E labeled delta sites in NG108-15 in the presence of the non-opioid blocking peptide, beta-endorphin (6-31) (beta E (6-31)). Silver grains resulting from 125I-beta E binding to the opioid sites occurred in diffuse patches over several cells, with preferential location in dense cell patches. Pretreatment of NG108-15 with the delta agonist DADLE, previously shown to decrease beta E binding to delta sites on intact cells, also reduced silver grain density; however, some cells located in dense cell clusters were resistant to substantial agonist induced loss of labeling. These results suggest that delta opioid binding has a heterogenous cellular distribution in NG108.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号