首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinetic properties of rrn promoters in Escherichia coli   总被引:3,自引:0,他引:3  
Zhang X  Dennis P  Ehrenberg M  Bremer H 《Biochimie》2002,84(10):981-996
  相似文献   

2.
3.
4.
The seven rRNA operons in Escherichia coli each contain two promoters, rrn P1 and rrn P2. Most previous studies have focused on the rrn P1 promoters. Here we report a systematic analysis of the activity and regulation of the rrnB P2 promoter in order to define the intrinsic properties of rrn P2 promoters and to understand better their contributions to rRNA synthesis when they are in their natural setting downstream of rrn P1 promoters. In contrast to the conclusions reached in some previous studies, we find that rrnB P2 is regulated: it displays clear responses to amino acid availability (stringent control), rRNA gene dose (feedback control), and changes in growth rate (growth rate-dependent control). Stringent control of rrnB P2 requires the alarmone ppGpp, but growth rate-dependent control of rrnB P2 does not require ppGpp. The rrnB P2 core promoter sequence (-37 to +7) is sufficient to serve as the target for growth rate-dependent regulation.  相似文献   

5.
6.
7.
The effects of extra, plasmid-borne rRNA genes on the synthesis rate of rRNA in Escherichia coli were examined by measuring the fraction of total RNA synthesis that is rRNA and tRNA (rs/rt), the cytoplasmic concentration of guanosine tetraphosphate (ppGpp), and the absolute rates of RNA and protein synthesis. Experiments were carried out in different growth media and with two different strains of E. coli, B/r and K-12. The results indicated: 1) increased rrn gene dosage from either intact or defective rrn genes reduced bacterial growth rates and ribosome activity (protein synthesis rate/average ribosome), and increased rs/rt. 2) Extra intact, but not extra defective, plasmid-borne rrn genes caused the level of ppGpp to be increased in comparison to the pBR322-carrying control strain. 3) As a function of ppGpp, rs/rt was increased with either intact or defective rrn genes. 4) The rRNA synthesis rate/rrn gene was reduced in the presence of extra rrn genes; this reduction in gene activity was greater with intact than with defective rrn genes. An analysis of these results showed that they are consistent with the ppGpp hypothesis of rRNA control but not with a feedback effector role of translating ribosomes.  相似文献   

8.
9.
10.
Weak stringent or relaxed responses were induced in Escherichia coli (relA+), using mild amino acid starvation or treatment with chloramphenicol at low concentrations, respectively, such that the growth rate was barely reduced. In this manner, the intracellular concentration of the nucleotide guanosine tetraphosphate, ppGpp, could be varied in any desired range between 0 and 1000 pmol of ppGpp per OD460 unit of culture mass. At the same time, the rate of synthesis of stable RNA (rs; rRNA and tRNA) was measured, relative to the total instantaneous rate of RNA synthesis (rt). The correlation between the cytoplasmic concentration of ppGpp and stable RNA gene activity (rs/rt) was the same as that observed previously with relA+ and relA strains growing exponentially at different rates in different media. This suggests that the distinction between growth control and stringent control of stable RNA synthesis is arbitrary, and that both kinds of control reflect the same ppGpp-dependent phenomenon. By increasing the stable RNA gene dosage, using high copy number plasmids carrying an rrn gene, we have tested the idea that ppGpp partitions the bacterial RNA polymerase into two forms with different probabilities to initiate at stable RNA and mRNA promoters. The relaxed response was not significantly altered, but the extent of the stringent response was reduced by the presence of extra rrn genes. The results agree with quantitative predictions derived from the RNA polymerase partitioning hypothesis.  相似文献   

11.
A controversy has surrounded the questions of whether or not guanosine tetraphosphate (ppGpp) is a specific inhibitor of bacterial rRNA and tRNA synthesis, especially during normal exponential growth, and whether the RNA polymerase is the target of ppGpp action. To answer these questions, a pBR322-derived plasmid, pKT28, was constructed that carries the Escherichia coli relA gene encoding a ppGpp synthetase under control of the lacUV5 promoter. The plasmid was used to transform the ppGpp reporter strain VH271 in which expression of beta-galactosidase from an rrnB P1 promoter is inhibited by ppGpp. In the presence of high concentrations of lac inducer, bacteria of the transformed strain accumulate ppGpp with the result that synthesis of rRNA and beta-galactosidase is inhibited and growth ceases. At low concentrations of inducer, growth is only reduced and cells form small white colonies on X-gal indicator plates. After continued incubation, these colonies form blue sectors of faster growing mutant cells. Phage P1 transduction experiments showed that these mutants have mutations cotransducing with rpoB, the gene encoding the beta-subunit of RNA polymerase. One particular mutant strain, KT13, had acquired partial resistance to ppGpp inhibition of rRNA synthesis. The mutation in this strain was cloned by in vivo recombination into an rpoB plasmid. The presence of this plasmid conferred increased resistance to overproduction of ppGpp. These results suggest that ppGpp is a specific inhibitor of rRNA synthesis, even in the absence of amino acid starvation, and that RNA polymerase is involved as the target of ppGpp action.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
An isogenic pair of relA+ and relA strains of Escherichia coli B/r with a mutation in the RNA polymerase subunit gene rpoB (Rifr) was isolated in which the relationship between guanosine tetraphosphate (ppGpp) concentration and stable RNA (rRNA, tRNA) gene activity was altered. The RNA polymerase in the rpoB strains was found to be about 20-fold more sensitive to ppGpp with respect to its stable RNA promoter activity than was the wild-type enzyme. The existence of such mutants is consistent with the idea that ppGpp interacts with the RNA polymerase enzyme and thereby alters its promoter selectivity, i.e., reduces its affinity for the stable RNA promoters. Under most conditions, the rpoB mutants had a reduced rate of growth and about a 10-fold-reduced intracellular concentration of ppGpp compared with the rpoB wild-type strains. The reduction of the level of ppGpp in the rpoB mutants during exponential growth was presumably a reflection of an indirect effect of the rpoB mutation on the control of relA-independent ppGpp metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号