首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The impact of fish-mediated changes on the structure and grazingof zooplankton on phytoplankton and bacterioplankton was studiedin Lake Søbygaard during the period 1984–92 bymeans of in vitro grazing experiments (14C-labelled phytoplankton,3H-labelled bacterioplankton) and model predictions. Measuredzooplankton clearance rates ranged from 0–25 ml l–1h–1 on phytoplankton to 0–33 ml l–1 h–1on bacterioplankton.The highest rates were found during thesummer when Daphnia spp. were dominant. As the phytoplanktonbiomass was substantially greater than that of bacterioplanktonthroughout the study period, ingestion of phytoplankton was26-fold greater than that of bacterioplankton. Multiple regressionanalysis of the experimental data revealed that Daphnia spp.,Bosmina longirostris and Cyclops vicinus, which were the dominantzooplankton, all contributed significantly to the variationin ingestion of phytoplankton, while only Daphnia spp. contributedsignificantly to that of bacterioplankton. Using estimated meanvalues for clearance and ingestion rates for different zooplankters,we calculated zooplankton grazing on phytoplankton and bacterioplanktonon the basis of monitoring data of lake plankton obtained duringa 9 year study period. Summer mean grazing ranged from 2 to4% of phytoplankton production and 2% of bacterioplankton productionto maxima of 53 and 88%, respectively. The grazing percentagedecreased with increasing density of planktivorous fish caughtin August each year using gill nets and shore-line electrofishing.The changes along a gradient of planktivorous fish abundanceseemed highest for bacterioplankton. Accordingly, the percentagecontribution of bacterioplankton to the total ingestion of thetwo carbon sources decreased from a summer mean value of 8%in Daphnia-dominated communities at lower fish density to 0.7–1.1%at high fish density, when cyclopoid copepods or Bosmina androtifers dominated. Likewise, the percentage of phytoplanktonproduction channelled through the bacteria varied, it beinghighest (5–8%) at high fish densities. It is argued thatthe negative impact of zooplankton grazing on bacterioplanktonin shallow lakes is highest at intermediate phosphorus levels,under which conditions Daphnia dominate the zooplankton community.  相似文献   

2.
The experimentally measured oxygen consumption rate by the cladoceran,Ceriodaphnia dubia, showed a linear increase between 5 and 20°C.Oxygen consumption rates of C. dubia were estimated in situfrom respiratory electron transport system (ETS) activity inLake Rotongaio during summer stratification and winter mixing.Oxygen consumption was 0.002 µl O2 animal–1 h–1in the hypolimnion and 0.076 µl O2 animal–1 h–1in the epilimnion during stratification. Implications of respiredoxygen for metabolic carbon requirements are discussed.  相似文献   

3.
The in situ growth of the dominating pelagic organisms at severaltrophic levels was investigated during a spring bloom characterizedby well-mixed cold water. The study includes primary productionand the carbon flow through the nano-, micro- and mesozooplanktonpopulations based on population dynamics and specific growthrates. The phytoplankton biomass and production were totallydominated by small algae <20 µm. of which {small tilde}5%were <3µm. potentially a food source for the nano-and microzooplankton. The mean carbon-specific primary productionwas 0.15 day–1 and was regulated solely by light. Themean volume-based specific growth rate of bacterioplankton wasmodest. 0.1 day–1. and probably controlled by the lowtemperature. The volume-based specific growth rates of heterotrophicnanoflagellates. ciliates. rotifers and copepods were 0.35.0.13. 0.16 and 0.03 day–1, respectively. The observedgrowth of the heterotrophic plankton was generally not foodlimited, but was controlled by temperature. The stable temperatureduring the experiment therefore allows a cross-taxonomic comparisonof specific growth rates. The b exponent in the allometric relationship(G = aVth) between volume-specific growth rate (G) and individualbody size (V) was –0.15 ± 0.03 for all filtratingzooplankton. indicating an in situ scaling not far from thephysiological principles onginally demonstrated for laboratorypopulations.  相似文献   

4.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

5.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

6.
In situ rates of nitrate, ammoniwn and urea uptake by the phytoplanktonassemblage, and the regeneration rate of ammonium by the microbialassemblage, in Lake Biwa were measured using the nitrogen 15tracer method from 1985 to 1987. The rate of total nitrogen(sum of ammonium, nitrate and urea) uptake was in the rangeof 62–594 ng N–1 r–1 h–1. The percentagecontribution of ammonium uptake was 41–92%, that of urea4–58% and that of nitrate <1–28% of total uptake.The annual mean new production which was supported by nitrateuptake was 18% of the total production in 1986. The phytoplanktonassemblage in Lake Biwa preferentially utilized regeneratednitrogen, such as ammonium and urea, whose concentration wasmuch lower than that of nitrate throughout the observation penodwithout in summer. The in situ nitrogen uptake rate was almostsufficient to meet the nitrogen requirement of the phytoplanktonassemblage, except in midsummer when the nitrate concentrationwas below the detection limit of 0.3 µg N r–1. Inthe trophogemc layer, the rate of ammonium regeneration was66–272 ng N 1–1 h–1 Although the ambient ammoniumconcentration in the trophogenic layer was maintained at aroundthe half-saturation constant for ammonium uptake kinetics, theammomum uptake rates were always highly correlated with ammoniumregeneration rates. From the size fractionation experimentsand estimates from the literature, it was suggested that themicrobial assemblage <1 µm may have been the most importantagent responsible for the ammonium regeneration processes inthe trophogenic layer.  相似文献   

7.
Grazing rates for Dolioletta gegenbauri averaged 2.5 ml zooid–1h–1 for trophozooids, 2.7 for phorozooids and 5.8 forgonozooids. In situ and laboratory rates were comparable forboth trophozooids and phorozooids.  相似文献   

8.
A method was developed to allow direct measurements of predationexerted by metazooplankton on ciliates. The method relied onthe use of ciliates labelled with fluorescent microparticles(FMP). Optimal labelling conditions were determined with ciliatesfrom cultures (Tetrahymena pyriformis) and with natural ciliateassemblages sampled in a river. Labelled T. pyriformis wereused as tracer food to determine gut passage time (GPT) andingestion rates of the rotifer Brachionus calyciflorus in thelaboratory. Predation of metazooplankton from the lowland riverMeuse (Belgium) was determined by labelling natural assemblagesof ciliates and using them as tracer food for metazooplankterssampled in the river. Optimal labels of ciliates, i.e. sharpdistribution of FMP in cells, were obtained with short incubations(10 min) and low FMP concentrations (1 x 105 mL–1). GPTvaried between 30 and 45 min for B. calyciflorus and from 25up to >35 min for rotifers from the river. The ingestionrate of B. calyciflorus fed with T. pyriformis was 3.3 ±0.6 ciliate rot–1 h–1, i.e. 1.4 ± 0.3 ngCrot–1 h–1. Metazooplankton species for which theingestion of ciliates could be measured were the rotifers Keratellacochlearis, Euchlanis dilatata and Synchaeta spp. Ingestionrates measured ranged from 0.4 to 12.5 ngC rot–1 h–1.The method proposed proved to be useful in estimating the predationof microplankton on ciliates in semi- in situ conditions; infurther developments, labelled natural assemblages of ciliatescould be used for in situ incubations with the Haney chamber.  相似文献   

9.
Pyrosomas are the large group of pelagic tunicates whose trophicrole in pelagic communities has not yet been sufficiently studied.We ran across a local area of high concentration of the mostwidespread and commonest species of pyrosomas, Pyrosoma atlanticum,450 miles off the Congo river mouth. The following was estimated:gut pigment content, defecation rate, organic carbon and pigmentcontent of fecal pellets, and sinking rate. Based on these dataand the measured number of pyrosomas colonies the grazing impacton phytoplankton and the fecal pellet flux were calculated.During the night swarms of 50–65 mm P.atlanticum removed53% of phytoplankton standing stock in the 0–10 m layer;sparsely distributed pyrosomas consumed only 4%. The grazingimpact in the 0–50 m layer was only 12.5 and <1% respectively.The fecal pellet flux resulting from nocturnal feeding of P.atlanticumwhile swarming made up 1.4–1.6 x 106 pellets m–210 h–1 or 305–1035 mg C m–2 10 h–1 and1.4 x 105 pellets m–2 10 h–1 or 87.4 mg C m–210 h–1 while non-swarming. Incubation experiments showedthe rapid degradation of fecal pellets at 23°C: the lossof pigment and carbon content was {small tilde}60–70%after 45 h. We believe that given the sinking rate of 70 m day–1the main part of fecal material does not leave the upper watercolumn and is retained in the trophic web of the epipelagiclayer.  相似文献   

10.
The population abundances and rates of biomass production ofheterotrophic nanoplankton (HNAN) in Georgia coastal waterswere evaluated by epifluorescence microscopy. HNAN populations(mostly non-pigmented microflagellates <10 µm in diameter)ranged from 0.3 x 103 cells ml–1 in shelf waters 15 kmoffshore to 6.3 x 103 cells ml–1 in waters 0.25 km fromthe coast. There was a strong correlation (r = 0.83) betweenHNAN and free bacterioplankton population abundances, but noapparent relation (r = 0.38) between HNAN and phototrophic nanopLankton(PNAN) abundances. HNAN biomass production in estuarine andnearshore shelf waters, as estimated from increases in HNANpopulations during laboratory incubations of natural water samples,ranged from 0.10 to 0.79 mg C m–3 h–3, with populationgeneration times of 9.7 to 26.5 h. There was a significant linearrelation (r = 0.95) between HNAN biomass and HNAN productivity.We calculated that HNAN may graze at least 30% to 50% of dailybacterioplankton production in Georgia coastal waters.  相似文献   

11.
Both predicted (incubator) and measured (in situ) 14C-assimilationrates were studied from February to November 1981 at three stationsin Boknafjorden, a deep silled fjord of western Norway. Sampleswere taken from different light depths within the euphotic zone.A high degree of conformity was found between the two approaches.Daily values of carbon assimilation integrated over the euphoticzone varied between 0.05 and 1.4 g C m–2. Yearly primaryproduction varied between stations from 82 to 112 g C m–2(120–148 g C m–2 when based on average light conditions).The light-saturation curve parameters B and PBmax ranged from0.0056 to 0.0537 mg C mg Chla–1 h–1 µE–1m2 and from 0.7 to 8.5 mg C mg Chla–1 h–2 (in situassimilation numbers ranged from 0.9 to 9.3 mg C mg Chla–1h–1) respectively, which compare well with those publishedfrom the northwestern side of the Atlantic. The overall importanceof light in controlling photosynthesis throughout the year wasrevealed by the light utilization index , estimated to be 0.43mg C mg Chla–1 E–1 m2. The maximum quantum yieldwas encountered on August 17, with 0.089 mol CE–1. Chla/Cratios above and below 0.010 were found to be typical for shade-and light-adapted cells respectively. Assimilation numbers andgrowth rates were linearly related only when considering light-adaptedcells. Consistent with the findings of this study, the applicabilityof IK, B and PBmax as indicators of light-shade adaptation propertiesshould be questioned. Maximum growth rates were encounteredduring an autumn bloom of the dinoflagellate Gyrodinium aureolum(1.0 doublings day–1), while 0.7–0.8 doublings day–1were found for a winter bloom (water temperature of 2°C)of the diatom Skeletonema costatum. No unambiguous temperatureeffect on assimilation number and growth of phytoplankton couldbe recognized in Boknafjorden. A tendency towards increasedassimilation numbers coinciding with increased water columnstability was revealed. The highest PBmax values were oftenencountered at almost undetectable nutrient concentrations.At least during summer this could be attributed to recyclingof nutrients by macro- and/or microzooplankton, responsiblefor a greater part of the primary production now being grazeddown. This study supports the convention that the depth of theeuphotic zone may extend considerably below the 1% light depth.  相似文献   

12.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

13.
Small, aloricate ciliates dominated the biomass of heterotrophicprotists throughout the water column at the end of the periodof stratification in Lake Kinneret, Israel The integrated biomassof cilates was 5–20 times that of heterotrophic flagellatesDuring incubation experiments, ciliate growth rates in cpilimneticwater corresponded to population doubling times of 9.6–19.4h, while flagellate populations showed no growth. Most of thealiates were small forms (10–30 µm long), includingscuticocihates, choreotnchs, Coleps spp. and Colpoda spp., andappeared to be consuming bacteria, coccoid cyanobacteria, and<5 µm eukaryotic algae. Grazing rates of cihate assemblageson picoplankton in the epilimnion, as determined by the uptakeof fluorescently labeled bacteria and cyanobactena, ranged from62 to 86 nl cell1 h1 Colpoda steini, isolatedfrom lakewater, grew on a cultured freshwater Synechococcussp with a doubling time of 4.5 h, and a gross growth efficiencyof 48% The estimated daily requirements of ciliates for growthapproximately equalled total phytoplankton production. We calculatedthat ciliates in the epilimnion were clearing 4–10% ofthe bacterioplankton and cyanobactenal standing stocks per daySince this would not be sufficient food consumption to meetdaily carbon requirements of the aliates, it is likely thatthese organisms were also grazing a significant amount of autotrophicand heterotrophic eukaryotic cells in Lake Kinneret.  相似文献   

14.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

15.
Autotrophic picoplankton populations in Lake Kinneret are composedof picocyanobacteria and picoeukaryotes. Overall, the ratesof photosynthetic carbon fixed by autotrophic picoplankton duringthis study were low (0.01–1.5 mg Cm–3 h–1).The highest chlorophyll photosynthetic activity of the <3µm cell-size fraction was found in spring, when picoeukaryotespredominated and in addition small nanoplankton passed throughthe filters. The maximum cell-specific photosynthetic rate ofcarbon fixation by picocyanobacteria and picoeukaryotes was2.5 and 63 fg C cell–1 h–1, respectively. The highestspecific carbon fixation rate of autotrophic picoplankton was11 µg C µg–1 Chl h–1 The proportionalcontribution of autotrophic picoplankton to total photosynthesisusually increased with depth. Picocyanobacteria collected fromthe dark, anaerobic hypolimnion were viable and capable of activephotosynthesis when incubated at water depths within the euphoticzone. Maximum rates of photosynthesis (Pmax) for picocyanobacteriaranged from 5.4 to 31.4 fg C cell–1 h–1 with thehighest values in hypolimnetic samples exposed to irradiance.Photosynthetic efficiency (  相似文献   

16.
Some characteristics of the carbon compounds released by Daphnia   总被引:2,自引:0,他引:2  
The Daphnia species studied released 18–100% of the algalcarbon ingested as dissolved and particulate carbon compounds,presumably mainly as feces. The particulate fraction constitutedon average 79 5% of the total released compounds, leaving21% as dissolved compounds. The particles released were verysmall and transparent, not visible by light microscopy Moreover,they contained significant amounts of chlorophyll derivatives.The dissolved compounds consisted mainly of small molecules(mol. wt >103 daltons), and were shown to be utilized byplanktonic bacteria. Our results show that particulate organiccarbon and chlorophyll a should not be used as measures foralgal carbon in grazing experiments with Daphnia. Both theseparameters were influenced by the animals' fecal particles,yielding lowered clearance rates compared with those obtainedby using cell numbers as a measure for algal carbon.  相似文献   

17.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

18.
The uptake rate of carbon and nitrogen (ammonium, nitrate andurea) by the Microcystis predominating among phytoplankton wasinvestigated in the summer of 1984 in Takahamaira Bay of LakeKasumigaura. The Vmax values of Microcystis for nitrate (0.025–0.046h–1) and ammonium (0.15–0.17 h–1) were considerablyhigher than other natural phytoplankton. The ammonium, nitrateand urea uptake by Microcystis was light dependent and was notinhibited with nigh light intensity. The K1 values were farlower than the Ik values. The carbon uptake was not influencedby nitrogen enrichment. Microcystis accelerated the uptake rateby changing Vmax/K s value when nitrogen versus carbon contentin cells declined. Nitrate was scarcely existent in TakahamairiBay during the summer, when Microcystis usually used ammoniumas the nitrogen source. However, the standing stock of ammoniumin the water was far lower than the daily ammonium uptake rates.Therefore, the ammonium in this water had to be supplied becauseof its rapid turn-over time (–0.7–2.6 h).  相似文献   

19.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

20.
The ingestion of autotrophic and heterotrophic nanoplanktonby two estuarine copepods, Eurytenora affinis and Acarith bifilosa,was measured in various environmental conditions using the incubationmethod and epifluorescence microscopy. Egg production of thespecies was also deter mined in order to estimate their carbonrequirements. Assuming a gross efficiency of egg productionof 0.3, nanoplanktonic carbon ingested always met the carbonrequirements suggesting that, most of the time, other carbonsources could be unnecessaly. Nanoplankton ingestion by A.bifilosa(from 128 to 1693 cells ind.–1 h–1) was dominatedby autotrophic forms (60–97%) and was seriously affectedby high (>100 mg l–1 suspended particulate matter (SPM)concentrations. Nanoplankton ingestion by E.affinis (from 300to 1049 cells ind–1 h–1) was relatively stable incomparison, but this latter species seemed to switch its grazingpressure from autotrophic to heterotrophic forms when SPM concentrationsincreased. Thus, two copepod species, living in the same estuary,presented two different feeding behaviours, probably to maximizeenergy input per unit of energy expenditure. Such differencescould contribute to the spatial and seasonal segregation ofthese species which is usually observed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号