首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S. cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts. We, therefore, term this biocide saccharomycin. The native AMPs were purified by gel-filtration chromatography and its antimicrobial activity was compared to that exhibited by chemically synthesized analogues (AMP1 and AMP2/3). Results show that the antimicrobial activity of the native AMPs is significantly higher than that of the synthetic analogues (AMP1 and AMP2/3), but a conjugated action of the two synthetic peptides is observed. Moreover, while the natural AMPs are active at pH 3.5, the synthetic peptides are not, since they are anionic and cannot dissolve at this acidic pH. These findings suggest that the molecular structure of the native biocide probably involves the formation of aggregates of several peptides that render them soluble under acidic conditions. The death mechanisms induced by the AMPs were also evaluated by means of epifluorescence microscopy-based methods. Sensitive yeast cells treated with the synthetic AMPs show cell membrane disruption, apoptotic molecular markers, and internalization of the AMPs. In conclusion, our work shows that saccharomycin is a natural biocide secreted by S. cerevisiae whose activity depends on the conjugated action of GAPDH-derived peptides. This study also reveals that S. cerevisiae secretes GAPDH-derived peptides as a strategy to combat other microbial species during alcoholic fermentations.  相似文献   

2.
Antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms. Here we demonstrate that the outer membrane lipoprotein, Lpp, of Enterobacteriaceae interacts with and promotes susceptibility to the bactericidal activities of AMPs. The oligomeric Lpp was specifically recognized by several cationic α-helical AMPs, including SMAP-29, CAP-18, and LL-37; AMP-mediated bactericidal activities were blocked by anti-Lpp antibody blocking. Blebbing of the outer membrane and increase in membrane permeability occurred in association with the coordinate internalization of Lpp and AMP. Interestingly, the specific binding of AMP to Lpp was resistant to divalent cations and salts, which were able to inhibit the bactericidal activities of some AMPs. Furthermore, using His-tagged Lpp as a ligand, we retrieved several characterized AMPs, including SMAP-29 and hRNase 7, from a peptide library containing crude mammalian cell lysates. Overall, this study explores a new mechanism and target of antimicrobial activity and provides a novel method for screening of antimicrobials for use against drug-resistant bacteria.  相似文献   

3.
Pius J  Morrow MR  Booth V 《Biochemistry》2012,51(1):118-125
A key aspect of the activity of antimicrobial peptides (AMPs) is their interaction with membranes. Efforts to elucidate their detailed mechanisms have focused on applying biophysical methods, including nuclear magnetic resonance (NMR), to AMPs in model lipid systems. However, these highly simplified systems fail to capture many of the features of the much more complex cell envelopes with which AMPs interact in vivo. To address this issue, we have designed a procedure to incorporate high levels of (2)H NMR labels specifically into the cell membrane of Escherichia coli and used this approach to study the interactions between the AMP MSI-78 and the membranes of intact bacteria. The (2)H NMR spectra of these membrane-deuterated bacteria can be reproduced in the absence and presence of MSI-78. Because the (2)H NMR data provide a quantitative measure of lipid disorder, they directly report on the lipid bilayer disruption central to the function of AMPs, in the context of intact bacteria. Addition of MSI-78 to the bacteria leads to decreases in the order of the lipid acyl chains. The molar peptide:lipid ratios required to observe the effects of MSI-78 on acyl chain order are approximately 30 times greater than the ratios needed to observe effects in model lipid systems and approximately 100 times less than the ratios required to observe inhibition of cell growth in biological assays. The observations thus suggest that MSI-78 disrupts the bilayer even at sublethal AMP levels and that a large fraction of the peptide does not actually reach the inner membrane.  相似文献   

4.
The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred.  相似文献   

5.
Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a ‘single-edged sword’ that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.  相似文献   

6.
Antimicrobial peptides (AMPs) have great potential in treating multi-drug resistant bacterial infections. The antimicrobial activity of d -enantiomers is significantly higher than l -enantiomers and sometimes selectively enhanced against Gram-positive bacteria. Unlike phospholipids in the bacterial plasma membrane, the role of other bacterial cell envelop components is often overlooked in the mode of action of AMPs. In this work, we explored the structural interactions between the main different structural components in Gram-negative/Gram-positive bacteria and the two enantiomers of a designer AMP, GL13K. We observed that both l -GL13K and d -GL13K formed self-assembled amyloid-like nanofibrils when the peptides interacted with lipopolysaccharide and lipoteichoic acid, components of the outer membrane of Gram-negative bacteria and cell wall of Gram-positive bacteria, respectively. Another cell wall component, peptidoglycan, showed strong interactions exclusively with d -GL13K and formed distinct laminar structures. This specific interaction between peptidoglycans and d -GL13K might contribute to the enhanced activity of d -GL13K against Gram-positive bacteria as they have a much thicker peptidoglycan layer than Gram-negative bacteria. A better understanding of the specific role of bacterial cell envelop components in the AMPs mechanism of action can guide the design of more effective Gram-selective AMPs.  相似文献   

7.
Antimicrobial peptides (AMPs) are critical components of the innate immune system and exhibit bactericidal activity against a broad spectrum of bacteria. We investigated the use of N‐substituted glycine peptoid oligomers as AMP mimics with potent antimicrobial activity. The antimicrobial mechanism of action varies among different AMPs, but many of these peptides can penetrate bacterial cell membranes, causing cell lysis. We previously hypothesized that amphiphilic cyclic peptoids may act through a similar pore formation mechanism against methicillin‐resistant Staphylococcus aureus (MRSA). Peptoid‐induced membrane disruption is observed by scanning electron microscopy and results in a loss of membrane integrity. We demonstrate that the antimicrobial activity of the peptoids is attenuated with the addition of polyethylene glycol osmoprotectants, signifying protection from a loss of osmotic balance. This decrease in antimicrobial activity is more significant with larger osmoprotectants, indicating that peptoids form pores with initial diameters of ~2.0–3.8 nm. The initial membrane pores formed by cyclic peptoid hexamers are comparable in diameter to those formed by larger and structurally distinct AMPs. After 24 h, the membrane pores expand to >200 nm in diameter. Together, these results indicate that cyclic peptoids exhibit a mechanism of action that includes effects manifested at the cell membrane of MRSA. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 227–236, 2015.  相似文献   

8.
Antimicrobial peptides (AMPs): peptide structure and mode of action   总被引:4,自引:0,他引:4  
Antimicrobial peptides (AMPs) have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum. Their amino acid composition, amphipathicity, cationic charge, and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of AMP activity, their relevance to resolving how peptides damage and kill microorganisms still needs to be clarified. Moreover, many AMPs employ sophisticated and dynamic mechanisms of action to carry out their likely roles in antimicrobial host defense. Recently, it has been speculated that transmembrane pore formation is not the only mechanism of microbial killing by AMPs. In fact, several observations suggest that translocated AMPs can alter cytoplasmic membrane septum formation, reduce cell-wall, nucleic acid, and protein synthesis, and inhibit enzymatic activity. In this review, we present the structures of several AMPs as well as models of how AMPs induce pore formation. AMPs have received special attention as a possible alternative way to combat antibiotic-resistant bacterial strains. It may be possible to design synthetic AMPs with enhanced activity for microbial cells, especially those with antibiotic resistance, as well as synergistic effects with conventional antibiotic agents that lack cytotoxic or hemolytic activity.  相似文献   

9.
Bacterial resistance to antimicrobial peptides   总被引:1,自引:0,他引:1  
Antimicrobial peptides (AMPs) or host defense peptides (HDPs) are vital components of human innate defense system targeting human‐related bacteria. Many bacteria have various mechanisms interfering with AMP activity, causing resistance to AMPs. Since AMPs are considered as potential novel antimicrobial drugs, understanding the mechanisms of bacterial resistance to direct killing of AMPs is of great significance. In this review, a comparative overview of bacterial strategies for resistance to direct killing of various AMPs is presented. Such strategies include bacterial cell envelope modification, AMP degradation, sequestration, expelling, and capsule.  相似文献   

10.
A better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and for in vitro assessment, variants of Enterococcus faecalis that are resistant to different doses of the fungal AMP alamethicin (Alm(r)) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Alm(r) variants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Alm(r) variants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Alm(r) variants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using an in vitro colorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.  相似文献   

11.
Multidrug antibiotic resistance is an increasingly serious public health problem worldwide. Thus, there is a significant and urgent need for the development of new classes of antibiotics that do not induce resistance. To develop such antimicrobial compounds, we must look toward agents with novel mechanisms of action. Membrane-permeabilizing antimicrobial peptides (AMPs) are good candidates because they act without high specificity toward a protein target, which reduces the likelihood of induced resistance. Understanding the mechanism of membrane permeabilization is crucial for the development of AMPs into useful antimicrobial agents. Various models, some phenomenological and others more quantitative or semimolecular, have been proposed to explain the action of AMPs. While these models explain many aspects of AMP action, none of the models captures all of the experimental observations, and significant questions remain unanswered. Here, we discuss the state of the field and pose some questions that, if answered, could speed the discovery of clinically useful peptide antibiotics.  相似文献   

12.
果蝇作为一种模式昆虫,为研究昆虫和人类的先天免疫发挥了重要作用。目前对果蝇体内免疫诱导产生的抗微生物肽多基因家族在分子进化、抗菌功能的分子特征和免疫诱导表达的信号传递机制等方面的研究进展,进一步加深了人们对昆虫乃至其他动物和人类先天免疫模式的认识,为研究其他昆虫特别是作为主要农林害虫的鳞翅目昆虫的先天免疫机制发挥了重要作用。本文集中对黑腹果蝇Drosophila melanogaster抗微生物肽及其免疫模式的研究结果和最新进展进行了介绍,其中包括作者近几年的研究结果。  相似文献   

13.
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.  相似文献   

14.
抗菌肽(antimicrobial peptides, AMPs)是生物先天免疫系统的重要组成部分,可帮助宿主有效应对病原细菌、真菌和病毒等微生物的胁迫,被认为是医疗、食品加工和农业领域最具前途和潜力的抗生素替代物。病原微生物在与抗菌肽的互作中进化出了多种有针对性的抗性机制,本文从病原微生物对AMPs的感应与基因调控、细胞壁/膜成份的修饰、分泌蛋白酶降解及利用外排泵排出等四个方面综述了国内外的研究进展,并对AMPs类制品的研究前景进行了讨论与展望。  相似文献   

15.
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.  相似文献   

16.
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented.  相似文献   

17.
Antimicrobial peptides (AMPs) have been established over millennia as powerful components of the innate immune system of many organisms. Due to their broad spectrum of activity and the development of host resistance against them being unlikely, AMPs are strong candidates for controlling drug-resistant pathogenic microbial pathogens. AMPs cause cell death through several independent or cooperative mechanisms involving membrane lysis, non-lytic activity, and/or intracellular mechanisms. Biochemical determinants such as peptide length, primary sequence, charge, secondary structure, hydrophobicity, amphipathicity and host cell membrane composition together influence the biological activities of peptides. A number of biophysical techniques have been used in recent years to study the mechanisms of action of AMPs. This work appraises the molecular parameters that determine the biocidal activity of AMPs and overviews their mechanisms of actions and the diverse biochemical, biophysical and microscopy techniques utilised to elucidate these.  相似文献   

18.
19.

Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.

  相似文献   

20.
Antimicrobial peptides (AMPs) provide a promising solution to the serious threat of multidrug-resistant bacteria or superbugs to public healthcare, due to their unique disruption to bacterial membrane such as perforation. Unfortunately, the underlying action mechanism of AMPs, especially the possible transition between the membrane binding and perforation states of peptides (i.e., the classical two-state model), is still largely unknown. Herein, by combining experimental techniques with pertinent membrane models and molecular dynamic (MD) simulations, new insights into the intermediate states of the AMP melittin-membrane interaction process are obtained. Specifically, it is demonstrated that, after the initial binding, the accumulated melittin on the bilayer triggers vigorous fluctuation of the membrane and even extracts some lipid molecules exclusively from the deformed outer leaflet of the bilayer. Such a distinctive mass removal manner and the resultant local asymmetry in lipid number between the two leaflets change the mechanical status of the membrane and in turn reduce the free energy barrier for the melittin insertion. Finally, the formation of the transmembrane pores is facilitated significantly. These findings provide new insights into the complicated antimicrobial mechanisms of AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号