首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of peptide fragment 1–16 of beta-amyloid with transition metals play an important role in the development of a broad class of neurodegenerative diseases, which determines the interest in investigating the structures of these complexes. In this work, we have applied the method of the deuterium/hydrogen exchange in combination with ultra-high-resolution mass spectrometry to study conformational changes in (1–16) beta-amyloid peptide induced by binding of zinc(II) atoms. The efficiency of the deuterium/hydrogen exchange depended on the number of zinc atoms bound to the peptide and on the temperature of the ionization source region. Deuterium/hydrogen exchange reactions have been performed directly in the ionization source. The number of exchanges decreased considerably with an increasing numbers of zinc atoms. The relationship has been described with a damped exponential curve, which indicated that the binding of zinc atoms altered the conformation of the peptide ion by making it less open, which limits the access to inner areas of the molecule.  相似文献   

2.
The membrane-associated pulmonary surfactant protein C (SP-C), containing a polyvaline alpha-helix, and a synthetic SP-C analogue with a polyleucine helix (SP-C(Leu)) were studied by hydrogen/deuterium exchange matrix-assisted laser desorption ionization (MALDI) mass spectrometry. SP-C, but not SP-C(Leu), formed abundant amyloid fibrils under experimental conditions. In CD(3)OD/D(2)O, 91:9 (v/v), containing 2 mM ammonium acetate, SP-C(Leu) and SP-C exchanged 40% of their exchangeable hydrogens within 1 min. This corresponds to exchange of labile side-chain hydrogen atoms, hydrogens on the N- and C-terminal heteroatoms, and amide hydrogen atoms in the unstructured N-terminal regions. After approximately 300 h, four exchangeable hydrogen atoms in SP-C(Leu) and 10 in SP-C remained unexchanged. During this time period the ion current corresponding to singly charged SP-C decreased to <10% of the initial value due to the formation of insoluble aggregates that are not detected by MALDI mass spectrometry. In contrast, the ion current for SP-C(Leu) was maintained over this time period, although the peptides were incubated together. In combination, hydrogen/deuterium exchange and aggregation data indicate that the polyleucine peptide refolds into a helix after opening, while the unfolded polyvaline peptide forms insoluble beta-sheet aggregates rather than refolding into a helix. The SP-C helix, but not the SP-C(Leu) helix, is thus in a metastable state, which may contribute to the recently observed tendency of SP-C and its precursor to misfold and aggregate in vivo.  相似文献   

3.
The electron impact ionization of C-4-alkylated cholest-5-en-3β-hydroxysterols has been investigated. The mass spectra of the C-4-alkylated cholesterols contain a number of ions in the high mass region for which analogous ions are not found in the spectrum of cholesterol. Detailed studies of the composition and origin of these ions have been made by high resolution mass spectrometry and analysis of metastable ions. In addition, a large number of isotopically (deuterium and 18O) substituted C-4-alkylated analogues have been prepared to assist in the interpretation of the spectra. The combined results indicate the occurrence of a number of very complex and unusual electron ionization induced fragmentations. Most notable of the findings reported herein concerns the demonstration of the formation of an ion involving loss of the elements of ring A with an intramolecular shift of the oxygen and hydrogen atoms of the hydroxyl function to the charge-retaining species.  相似文献   

4.
C. glutamicum meso-diaminopimelate dehydrogenase is an enzyme of the L-lysine biosynthetic pathway in bacteria. The binding of NADPH and diaminopimelate to the recombinant, overexpressed enzyme has been analyzed using hydrogen/deuterium exchange and electrospray ionization/mass spectrometry. NADPH binding reduces the extent of deuterium exchange, as does the binding of diaminopimelate. Pepsin digestion of the deuterated enzyme and enzyme-substrate complexes coupled with liquid chromatography/mass spectrometry have allowed the identification of eight peptides whose deuterium exchange slows considerably upon the binding of the substrates. These peptides represent regions known or thought to bind NADPH and diaminopimelate. One of these peptides is located at the interdomain hinge region and is proposed to be exchangeable in the "open," catalytically inactive, conformation but nonexchangeable in the "closed," catalytically active conformation formed after NADPH and diaminopimelate binding and domain closure. Furthermore, the dimerization region has been localized by this method, and this study provides an example of detecting protein-protein interface regions using hydrogen/deuterium exchange and electrospray ionization.  相似文献   

5.
The biosynthesis of fatty acids from malonyl-CoA and acetyl-CoA was investigated with an enzyme preparation which was purified 100-fold from Brevibacterium ammoniagenes. Fatty acids synthesized in the presence of D2O and stereospecifically deuterated NADPH and NADH were isolated and analyzed by mass chromatography to examine the localization of deuterium in the molecule. The following results were obtained: 1) HB hydrogen of NADPH was used for beta-ketoacyl reductase. 2) HB hydrogen of NADH was used for enoyl reductase. 3) Hydrogen atoms from water were found on the even-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom) and some were also found on the odd-numbered methylene carbon atoms. 4) Hydrogen atoms from NADPH was found on the odd-numbered methylene carbon atoms (1 hydrogen per carbon). 5) Hydrogen atoms from NADH was also found on the odd-numbered methylene carbon atoms, but the number of incorporated hydrogen atoms was less than expected. The exchange of HB hydrogen of NADH with water catalyzed by enoyl reductase was suspected. 6) The exchange of methylene hydrogen atoms of malonyl-CoA with protons of water was suggested by 13C NMR analysis.  相似文献   

6.
Deuteration at C-4 and C-5 of sphingosine was achieved via a hydrogen–deuterium exchange reaction of a β-ketophosphonate intermediate catalyzed by ND4Cl in D2O/tetrahydrofuran. To install deuterium at C-3 of sphingosine and sphingomyelin, sodium borodeuteride reduction/cerium(III) chloride reduction of an α,β-enone in perdeuteromethanol was used.  相似文献   

7.
Hydrogen/deuterium exchange reactions of protonated and sodium cationized peptide molecules have been studied in the gas phase with a MALDI/quadrupole ion trap mass spectrometer. Unit-mass selected precursor ions were allowed to react with deuterated ammonia introduced into the trap cell by a pulsed valve. The reactant gas pressure, reaction time, and degree of the internal excitation of reactant ions were varied to explore the kinetics of the gas phase isotope exchange. Protonated peptide molecules exhibited a high degree of reactivity, some showing complete exchange of all labile hydrogen atoms. On the contrary, peptide molecules cationized with sodium exhibited only very limited reactivity, indicating a vast difference between the gas phase structures of the two ions. © 1997 Wiley-Liss Inc.  相似文献   

8.
HPLC-MS employing deuterium oxide and common MS-compatible deuterated additives in the mobile phase with electrospray ionization is shown to be a viable approach for the structural elucidation of impurities in pharmaceutically active agents following initial studies with protic mobile phases. This approach incorporates the hydrogen/deuterium (H/D) exchange reaction where deuterium is substituted for hydrogen at labile sites. Some developmental compounds studied include an amide, amine, lipopeptide, indole and methyl sulfone. H/D exchange is rapid and the chromatographic performance using deuterated mobile phases is comparable to protic counterparts.  相似文献   

9.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

10.
Neutron diffraction data from crystals of sperm whale carbonmonoxymyoglobin have been refined by the real space refinement technique. Estimates of the neutron occupancies at the end of the refinement show that the mean for each atom type (including hydrogen and deuterium) is close to the expected value and has a standard deviation from the mean of about 5%. Mean neutron occupancies of main-chain atoms involved in deuterium bonds versus those not involved in deuterium bonds demonstrate that the hydrogen/deuterium exchange of the latter group is higher. The oxygen and deuterium co-ordinates for 40 water molecules have been determined: 27 of these water molecules were involved in bridges between protein atoms, and nine were involved in deuterium bonds with main-chain atoms. The deuterium-bond angles in helical regions show significant deviations from linearity. The mean ND … O angle was 154(3) °2 and the mean CO … D angle was 145(3) °.  相似文献   

11.
The mechanism of hydrogen incorporation into fatty acids was investigated with an enzyme preparation from baker's yeast. Fatty acids synthesized from malonyl-CoA and acetyl-CoA in the presence of D2O or stereospecifically deuterium-labeled NADPH were isolated and analyzed by mass chromatography to examine the localization of deuterium atoms in the molecule. The following results were obtained: 1. Hydrogen atoms from water were found on the even-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom). The second hydrogen atom was incorporated as the result of hydrogen exchange phenomenon between the methylene group of malonyl CoA and water. 2. HB hydrogen of NADPH was used for beta-ketoacyl reductase. 3. HB hydrogen of NADPH was also used for enoyl reductase. 4. Hydrogen atoms from HB position of NADPH were found on the odd-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom).  相似文献   

12.
Park SH 《BMB reports》2008,41(1):35-40
The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.  相似文献   

13.
The rate at which amide hydrogens located at the peptide backbone in protein/protein complexes undergo hydrogen/deuterium exchange is highly dependent on whether the amide groups participate in binding. Here, a new mass spectrometric method is presented in which this effect is utilized for the characterization of protein/ligand binding sites. The information obtained is which region within the protein participates in binding. The method includes hydrogen/deuterium exchange of receptor and ligand protein amide protons, binding, and back exchange. After this procedure those backbone amide groups that participate in protein binding are protected from back exchange and therefore still deuterated. These regions were then identified by peptic proteolysis, fast microbore high-performance liquid chromatography separation, and electrospray ionization mass spectrometry. The approach has been applied to the investigation of structural features of insulin-like growth factor I (IGF-I) and the interaction of insulin-like growth factor I with IGF-I binding protein 1. The data show that the approach can provide information on the location of the hydrophobic core of IGF-1 and on two regions that are mainly involved in binding to IGF-I binding protein 1. The data are consistent with results obtained with other approaches. The amount of sample required for one experiment is in the subnanomolar range.  相似文献   

14.
Electrospray ionization mass spectrometry (ESI-MS) was used to analyze the hydrogen/deuterium exchange properties of the mastoparan peptide Apoica-MP during interactions with lipid vesicle membranes. Synthetic peptide was incorporated into large unilamellar vesicles (LUVs) of L-alpha-phosphatidylcholine (PC), resulting in proteoliposomes which were then diluted with D2O. After quenching deuteration by the addition of formic acid the H/D exchange was directly analyzed by ESI-MS. This strategy was used to investigate the architecture of the peptide in the membranes of PC LUVs. The deuterated peptide ions were analyzed under collision-induced dissociation (CID) mass spectrometry, which permitted the location of deuterons at the amide sites along the peptide backbone. Intramolecular hydrogen scrambling was investigated both in the free peptide and in its proteoliposome form. Some scrambling was observed for the free peptide; however, almost no scrambling occurred in the amide hydrogens of the peptide backbone embedded in the membrane. The CID spectra suggest that the N-terminal moiety of the peptide lies on the polar side of the lipid membrane, while the C-terminal region is embedded in the membrane. The protocol described here may be reliably applied to investigate the interaction of mastoparans with bilayer lipid systems.  相似文献   

15.
Deuterium exchange was monitored by electrospray ionization mass spectrometry (ESI-MS) to study the slowly exchanging (hydrogen bonded) peptide hydrogens of several alpha-helical peptides and beta-sheet proteins. Polypeptides were synthetically engineered to have mainly disordered, alpha-helical, or beta-sheet structure. For 3 isomeric 31-residue alpha-helical peptides, the number of slowly exchanging hydrogens as measured by ESI-MS in 50% CF3CD2OD (pD 9.5) provided estimates of their alpha-helicities (26%, 40%, 94%) that agreed well with the values (17%, 34%, 98%) measured by circular dichroic spectroscopy in the same nondeuterated solvent. For 3 betabellins containing a pair of beta-sheets and a related disordered peptide, their order of structural stability (12D > 12S > 14D > 14S) shown by their deuterium exchange rates in 10% CD3OD/0.5% CD3CO2D (pD 3.8) as measured by ESI-MS was the same as their order of structural stability to unfolding with increasing temperature or guanidinium chloride concentration as measured by circular dichroic spectroscopy in water. Compared to monitoring deuterium exchange by proton NMR spectrometry, monitoring deuterium exchange by ESI-MS requires much less sample (1-50 micrograms), much shorter analysis time (10-90 min), and no chemical quenching of the exchange reaction.  相似文献   

16.
The mass spectrum of the trimethylsilyl derivative of N-acetylsphinganine (dihydrosphingosine) has been studied in detail. Origins, structures and mechanisms of formation of the principal ions are supported by deuterium labelling and exact masses. The ions formed on electron impact ionization at 70 eV can be divided into two main categories with respect to electron abstraction from one of the oxygen atoms or the nitrogen atom on the long-chain carbon backbone.  相似文献   

17.
Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins. High-resolution neutron diffractometers dedicated to biological macromolecules (BIX-type diffractometer) have been constructed at the Japan Atomic Energy Research Institute and they have been used in the 1.5A-resolution crystal structure analyses of several proteins. Interesting topics relevant to hydrogen and hydration in proteins, such as (1) the detailed geometry of hydrogen bonds; (2) information regarding hydrogen/deuterium exchange behavior; (3) the acidities of certain H atoms; (4) the role of hydrogen atoms in enzyme mechanisms and thermostability; (5) the location methyl hydrogen atoms; and (6) dynamical behavior of hydration structures that include H positions have been extracted from these structural results. In addition, a method for the systematic growth of large single crystals based on phase diagrams has been introduced and will be briefly described in this article.  相似文献   

18.
In order to study the biosynthesis of agatharesinol, a norlignan, l-phenylalanine-[ring-2,3,4,5,6-2H] and trans-cinnamic acid-[ring-13C6] were administered to fresh sapwood sticks of Cryptomeria japonica (sugi, Japanese cedar), that is, the labeled precursors were allowed to be absorbed through the tangential section of the wood sticks. The wood sticks were then maintained in high humidity desiccators for approximately 20 d after which ethyl acetate (EtOAc) extracts of the wood sticks were analyzed by gas chromatography-mass spectrometry (GC-MS). Native agatharesinol (trimethylsilylated) produces an m/z 369 ion and an m/z 484 ion that are characteristic of its structure. Agatharesinol formed in the sapwood sticks treated with the deuterium-labeled l-phenylalanine generated both of these ions together with m/z 373 and 377 ions (m/z 369+4 and +8, respectively), and also m/z 488 and 492 ions (m/z 484+4 and +8, respectively). Generation of m/z 373 and 488 ions is attributed to the substitution by deuterium of the four hydrogen atoms of either of the p-hydroxyphenyl rings of agatharesinol, and that of m/z 377 and 492 ions is attributed to the substitution by deuterium of the eight hydrogen atoms of both p-hydroxyphenyl rings. In the administration of the 13C-labeled trans-cinnamic acid, m/z 375 and 381 ions (m/z 369+6 and +12, respectively), and also m/z 490 and 496 ions (m/z 484+6 and +12, respectively) were found, indicating that either aromatic ring or both aromatic rings of agatharesinol were 13C-labeled. Consequently, assimilation of the labeled precursors into agatharesinol was clearly detected, and an experimental procedure for studies on the biosynthesis was developed.  相似文献   

19.
We have adapted hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry (ESI-MS) to study protein conformation and excipient interactions in lyophilized solids. Using calmodulin (CaM, 17 kD) as a model protein, we demonstrate that trehalose and calcium exert site-specific effects on protein conformation. The effects of calcium are observed primarily in the calcium binding loops, while those of trehalose are observed primarily in non-terminal alpha-helical regions. To our knowledge, this is the first demonstration of site-specificity in the effects of excipients on protein structure in the solid state, and of the utility of H/D exchange with ESI-MS to characterize proteins in amorphous solids.  相似文献   

20.
Reduced cerium dioxide (CeO2?x) can reduce water, producing hydrogen at ?298 K. Kinetic studies were focused on the stoichiometric reaction of δ-phase cerium oxide (CeO1.818) with water vapor. Different activation energies of 18.1 and 33.4 kJ mol?1 were observed for the reactions at the temperature ranges above and below ca. 453 K, respectively. Rate equations observed in the two temperature ranges were also different. These results strongly suggest that the rate-determining steps are different between the two temperature ranges. Rapid oxygen exchange observed between H218O and lattice oxygen in cerium oxide of δ- phase at ? 298 K indicated that neither the adsorption of water molecules not the diffusion of oxygen ions in the bulk of the oxide can be the rate-determining step. H2D2 exchange occurred rapidly at 373 K compared to the rate of water decomposition, suggesting that the recombination of hydrogen atoms on the surface is not rate- determining either. A tentative reaction mechanism was proposed to explain the results of the kinetic studies. The rate-determining step at high temperatures (>453 K) is the reduction of OH? by the six-coordinated Ce3+ which is present in the nonstoichiometric cerium oxide, while that at low temperatures (<453 K) is the subsequent reduction of H+ by the seven-coordinated Ce3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号