首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shortage of functional groups on surface of poly(lactide-co-glycolide) (PLGA)-based drug delivery carriers always hampers its wide applications such as passive targeting and conjugation with targeting molecules. In this research, PLGA nanoparticles were modified with chitosan through physical adsorption and chemical binding methods. The surface charges were regulated by altering pH value in chitosan solutions. After the introduction of chitosan, zeta potential of the PLGA nanoparticle surface changed from negative charge to positive one, making the drug carriers more affinity to cancer cells. Functional groups were compared between PLGA nanoparticles and chitosan-modified PLGA nanoparticles. Amine groups were exhibited on PLGA nanoparticle surface after the chitosan modification as confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The modified nanoparticles showed an initial burst release followed by a moderate and sustained release profile. Higher percentage of drugs from cumulative release can be achieved in the same prolonged time range. Therefore, PLGA nanoparticles modified by chitosan showed versatility of surface and a possible improvement in the efficacy of current PLGA-based drug delivery system.  相似文献   

2.
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.  相似文献   

3.
Ganglioside GD2 is highly expressed on neuroectoderm-derived tumors and sarcomas, including neuroblastoma, retinoblastoma, melanoma, small cell lung cancer, brain tumors, osteosarcoma, rhabdomyosarcoma, Ewing’s sarcoma in children and adolescents, as well as liposarcoma, fibrosarcoma, leiomyosarcoma and other soft tissue sarcomas in adults. Since GD2 expression in normal tissues is restricted to the brain, which is inaccessible to circulating antibodies, and in selected peripheral nerves and melanocytes, it was deemed a suitable target for systemic tumor immunotherapy. Anti-GD2 antibodies have been actively tested in clinical trials for neuroblastoma for over the past two decades, with proven safety and efficacy. The main limitations have been acute pain toxicity associated with GD2 expression on peripheral nerve fibers and the inability of antibodies to treat bulky tumor. Several strategies have been developed to reduce pain toxicity, including bypassing complement activation, using blocking antibodies, or targeting of O-acetyl-GD2 derivative that is not expressed on peripheral nerves. To enhance anti-tumor efficacy, anti-GD2 monoclonal antibodies and fragments have been engineered into immunocytokines, immunotoxins, antibody drug conjugates, radiolabeled antibodies, targeted nanoparticles, T-cell engaging bispecific antibodies, and chimeric antigen receptors. The challenges of these approaches will be reviewed to build a perspective for next generation anti-GD2 therapeutics in cancer therapy.  相似文献   

4.
Immunoliposomes, directed to clinically relevant cell-surface molecules with antibodies, antibody fragments or peptides, are used for site-specific diagnostic evaluation or delivery of therapeutic agents. We have developed intrinsically echogenic liposomes (ELIP) covalently linked to fibrin(ogen)-specific antibodies and Fab fragments for ultrasonic imaging of atherosclerotic plaques. In order to determine the effect of liposomal conjugation on the molecular dynamics of fibrinogen binding, we studied the thermodynamic characteristics of unconjugated and ELIP-conjugated antibody molecules. Utilizing radioimmunoassay and enzyme-linked immunosorbent assay protocols, binding affinities were derived from data obtained at three temperatures. The thermodynamic functions DeltaH(o) , DeltaG(o) and DeltaS(o) were determined from van't Hoff plots and equations of state. The resultant functions indicated that both specific and nonspecific associations of antibody molecules with fibrinogen occurred through a variety of molecular interactions, including hydrophophic, ionic and hydrogen bonding mechanisms. ELIP conjugation of antibodies and Fab fragments introduced a characteristic change in both DeltaH(o) and DeltaS(o) of association, which corresponded to a variable contribution to binding by phospholipid gel-liquid crystal phase transitions. These observations suggest that a reciprocal energy transduction, affecting the strength of antibody-antigen binding, may be a singular characteristic of immunoliposomes, having utility for optimization and further development of the technology.  相似文献   

5.
Molecular optical imaging has shown promise in visualizing molecular biomarkers with subcellular resolution both noninvasively and in real-time. Here, we use gold nanoparticles as optical probes to provide meaningful signal in the presence of targeted biomarkers. We present a novel conjugation technique to control the binding orientation of antibodies on the surface of gold nanoparticles to maximize antibody functionality. Briefly, a heterobifunctional linker, hydrazide-polyethylene glycol-dithiol, is used to directionally attach the Fc, or nonbinding region of the antibody, to the gold nanoparticle surface. The conjugation strategy allows for multiplexing various glycosylated antibodies on a single nanoparticle. We present a method to prepare multifunctional nanoparticles by incorporating targeting and delivery moieties on the same nanoparticle that addresses the challenge of imaging intracellular biomarkers. The time estimate for the entire protocol is approximately 6 h.  相似文献   

6.
Opportunity to increase of immunogenicity of recombinant polypeptide P6 constructed on the basis of surface protective Bac protein by its chemical conjugation with dextran (D) 40 was studied. 3 preparations with different quantity of protein and polysaccharide components were obtained. Their testing with standard serum showed that antigenic determinants of the polypeptide were preserved although partly enclosed and structure of antigenic determinants did not significantly changed. On the model of subcutaneous immunization of mice it has been shown that two preparations--P6D2 and P6D3--have improved immunological characteristics. Conjugation of polypeptide P6 with dextran let to increase of immune response to P6 and affinity of P6-specific antibodies. Injection of nonconjugated P6 and dextran mixture showed that free dextran is not immunogenic and it suppress synthesis of P6-specific antibodies without effect on their affinity. Intranasal administration of nonconjugated P6 did not lead to P6-specific IgG in serum. After conjugation with dextran polypeptide P6 was recognized as an antigen and stimulated production of small quantity of antibodies. Technological process of chemical binding of protein antigen with polysaccharides, which let to regulate protein and polysaccharide components ratio, can be the effective method to increase immunogenicity of recombinant polypeptides.  相似文献   

7.
The objective of this study was to evaluate Camptothecin (CAMP)-loaded poly(N-isopropylacrylamide) (NIPAAm)/chitosan nanoparticles as a pH-sensitive carrier for specifically targeting tumors. The synthesis and properties of the system was studied by adjusting the mass ratio of NIPAAm and chitosan. The drug release characteristics of nanoparticles in vitro were investigated. The results showed that when the charge ratio between NIPAAm and chitosan of 4:1 (w/w) was achieved, the drug-loaded nanoparticles were most sensitive to tumor pH. Encapsulation efficiencies and loading were 73.7% and 8.4%, respectively. The cumulative release rate of CAMP was optimal at pH 6.8 and decreased rapidly either below pH 6.5 or above pH 6.9 in 37 °C. Based on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) test and fluorescence microscopy results, CAMP-loaded nanoparticles showed cytotoxicity at pH 6.8 but minimal cytotoxicity at pH 7.4. The pH-sensitive poly NIPAAm/chitosan nanoparticles provided some distinct advantages in delivering anti-cancer drugs to targeted tissues.  相似文献   

8.
Treatment of high-risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD(2) , which is expressed at high levels on NB cells, and infusion of donor-derived natural killer (NK) cells. To combine specific antibody-mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK-92 that stably express a GD(2) -specific chimeric antigen receptor (CAR) comprising an anti-GD(2) ch14.18 single chain Fv antibody fusion protein with CD3-ζ chain as a signalling moiety. CAR expression by gene-modified NK cells facilitated effective recognition and elimination of established GD(2) expressing NB cells, which were resistant to parental NK-92. In the case of intrinsically NK-sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK-92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD(2) -specific antibody or anti-idiotypic antibody occupying the CAR's cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD(2) -specific NK cells was also found against primary NB cells and GD(2) expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.  相似文献   

9.
Porcine circovirus type 2 (PCV2)-associated diseases have led to huge economic losses in pig industry. Our laboratory previously found that conjugation of chitosan oligosaccharides (COS) enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. In this study, an effective adjuvant system was developed by covalent conjugation of COS via a carrier protein (Ovalbumin, OVA) to further increase the immunogenicity of vaccine. Its effect on dendritic cells maturation was assessed in vitro and its immunogenicity was investigated in mice. The results indicated that, as compared to the PCV2 and COS-PCV2, COS-OVA-PCV2 stimulated dendritic cells to express higher maturation markers (CD80, CD86, CD40 and MHC class II) and remarkably promoted both humoral and cellular immunity against PCV2 by enhancing the lymphocyte proliferation and inducing a mixed Th1/Th2 response, including the increased production of PCV2-specific antibodies and raised levels of inflammatory cytokines. Furthermore, it displayed better immune-stimulating effects than the physical mixture of vaccine and ISA206 (a commercialized adjuvant). In conclusion, conjugation of COS via a carrier protein might be a promising strategy to enhance the immunogenicity of vaccines.  相似文献   

10.
Gangliosides are potentially useful targets for tumor destruction by antibodies. However, the role of gangliosides in T cell-mediated immunity to tumors is unclear. We produced three murine monoclonal anti-idiotypic antibodies (Ab2) against a monoclonal antibody (Ab1) that binds strongly to melanoma-associated GD2 ganglioside and weakly to GD3 ganglioside. All three Ab2 induced anti-anti-idiotypic antibodies (Ab3) with Ab1-like binding specificity to tumor cells and antigen in rabbits. The Ab3 specifically bound to GD2(+) tumor cells and isolated GD2, and shared idiotopes with the Ab1. Two of the three Ab2 induced GD2-specific delayed-type hypersensitivity responses in BALB/c and C57BL/6 mice, but not in C57BL/6/CD4(-/-) mice. Peripheral blood mononuclear cells (PBMC) from a melanoma patient proliferated specifically in response to in vitro stimulation with Ab2. Proliferation was accompanied by Th1-type cytokine production. Our studies demonstrate the induction of ganglioside-specific T cell-dependent immunity by Ab2 in mice. These T cells showed specific reactivity to ganglioside expressed by tumor cells.  相似文献   

11.
The murine antibody R24 and mouse-human Fv-IgG1(kappa) chimeric antibody chR24 are specific for the cell-surface tumor antigen disialoganglioside GD3. X-ray diffraction and surface plasmon resonance experiments have been employed to study the mechanism of "homophilic binding," in which molecules of R24 recognize and bind to other molecules of R24 though their heavy chain variable domains. R24 exhibits strong binding to liposomes containing disialoganglioside GD3; however, the kinetics are unusual in that saturation of binding is not observed. The binding of chR24 to GD3-bearing liposomes is significantly weaker, suggesting that cooperative interactions involving antibody constant regions contribute to R24 binding of membrane-bound GD3. The crystal structures of the Fabs from R24 and chR24 reveal the mechanism for homophilic binding and confirm that the homophilic and antigen-binding idiotopes are distinct. The homophilic binding idiotope is formed largely by an anti-parallel beta-sheet dimerization between the H2 complementarity determining region (CDR) loops of two Fabs, while the antigen-binding idiotope is a pocket formed by the three CDR loops on the heavy chain. The formation of homophilic dimers requires the presence of a canonical conformation for the H2 CDR in conjunction with participation of side chains. The relative positions of the homophilic and antigen-binding sites allows for a lattice of GD3-specific antibodies to be constructed, which is stabilized by the presence of the cell membrane. This model provides for the selective recognition by R24 of cells that overexpress GD3 on the cell surface.  相似文献   

12.
Immunoliposomes, directed to clinically relevant cell-surface molecules with antibodies, antibody fragments or peptides, are used for site-specific diagnostic evaluation or delivery of therapeutic agents. We have developed intrinsically echogenic liposomes (ELIP) covalently linked to fibrin(ogen)-specific antibodies and Fab fragments for ultrasonic imaging of atherosclerotic plaques. In order to determine the effect of liposomal conjugation on the molecular dynamics of fibrinogen binding, we studied the thermodynamic characteristics of unconjugated and ELIP-conjugated antibody molecules. Utilizing radioimmunoassay and enzyme-linked immunosorbent assay protocols, binding affinities were derived from data obtained at three temperatures. The thermodynamic functions ΔH°, ΔG° and ΔS° were determined from van't Hoff plots and equations of state. The resultant functions indicated that both specific and nonspecific associations of antibody molecules with fibrinogen occurred through a variety of molecular interactions, including hydrophophic, ionic and hydrogen bonding mechanisms. ELIP conjugation of antibodies and Fab fragments introduced a characteristic change in both ΔH° and ΔS° of association, which corresponded to a variable contribution to binding by phospholipid gel-liquid crystal phase transitions. These observations suggest that a reciprocal energy transduction, affecting the strength of antibody-antigen binding, may be a singular characteristic of immunoliposomes, having utility for optimization and further development of the technology.  相似文献   

13.
Yu X  Pishko MV 《Biomacromolecules》2011,12(9):3205-3212
Paclitaxel nanoparticles (PAX NPs) prepared with the size of 110 ± 10 nm and ζ potential of -40 ± 3 mV were encapsulated in synthetic/biomacromolecule shell chitosan, dextran-sulfate using a layer-by-layer self-assembly technique. Zeta potential measurements, analysis of X-ray photoelectron spectroscopy, and scanning electron microscopy confirmed the successful adsorption of each layer. Surface modifications of these core-shell NPs were performed by covalently conjugating with poly(ethylene glycol) (H(2)N-PEG-carboxymethyl, M(w) 3400) and fluorescence labeled wheat germ agglutinin (F-WGA) to build a biocompatible and targeted drug delivery system. 32% of PAX was released from four bilayers of biomacromolecule assembled NPs within 8 h as compared with >85% of the drug released from the bare NPs. Moreover, high cell viability with PEG conjugation and high binding capacity of WGA-modified NPs with Caco-2 cells were observed. This biocompatible and targeted NP-based drug delivery system, therefore, may be considered as a potential candidate for the treatment of colonic cancer and other diseases.  相似文献   

14.
Site-specific conjugation of small molecules to antibody molecules is a promising strategy for generation of antibody-drug conjugates. In this report, we describe the successful synthesis of a novel bifunctional molecule, 6-(azidomethyl)-2-pyridinecarboxyaldehyde (6-AM-2-PCA), which was used for conjugation of small molecules to peptides and antibodies. We demonstrated that 6-AM-2-PCA selectively reacted with N-terminal amino groups of peptides and antibodies. In addition, the azide group of 6-AM-2-PCA enabled copper-free click chemistry coupling with dibenzocyclooctyne-containing reagents. Bifunctional 6-AM-2-PCA mediated site-specific conjugation without requiring genetic engineering of peptides or antibodies. A key advantage of 6-AM-2-PCA as a conjugation reagent is its ability to modify proteins in a single step under physiological conditions that are sufficiently moderate to retain protein function. Therefore, this new click chemistry-based method could be a useful complement to other conjugation methods.  相似文献   

15.
Magnetic 'nanofactories', for localized manufacture and signal-guided delivery of small molecules to targeted cell surfaces, are demonstrated. They recruit nearby raw materials for synthesis, employ magnetic mobility for capture and localization of target cells, and deliver molecules to cells triggering their native phenotypic response, but with user-specified control. Our nanofactories, which synthesize and deliver the "universal" bacterial quorum-sensing signal molecule, autoinducer AI-2, to the surface of Escherichia coli, are assembled by first co-precipitating nanoparticles of iron salts and the biopolymer chitosan. E. coli AI-2 synthases, Pfs and LuxS, constructed with enzymatically activatable "pro-tags", are then covalently tethered onto the chitosan. These enzymes synthesize AI-2 from metabolite S-adenosylhomocysteine. Chitosan serves as a molecular scaffold and provides cell capture ability; magnetite provides stimuli responsiveness. These magnetic nanofactories are shown to modulate the natural progression of quorum-sensing activity. New prospects for small molecule delivery, based on localized synthesis, are envisioned.  相似文献   

16.
Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumor-directed effector cells.  相似文献   

17.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.  相似文献   

18.
We previously reported the binding specificities of two anti-ganglioside GD2 murine monoclonal antibodies (MAbs), A1-425 and A1-267, both of which are of IgG3 isotype. A1-425 reacts specifically with ganglioside GD2, whereas A1-267 binds preferentially to GD2 but also reacts with GD3 [Tai, T., Kawashima, I., Tada, N., & Dairiki, K. (1988) J. Biochem. 103, 682-687]. In this paper, they were used for comparative analyses of antibody-mediated cytotoxicity, i.e., antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human melanoma and neuroblastoma cell lines. Melanoma cells were found to contain GD2 and/or GD3, whereas neuroblastoma cells expressed only GD2. Both antibodies induced high levels of ADCC and CDC to GD2/GD3-positive cells with human peripheral large granular lymphocytes (LGL) as effector cells and in the presence of human serum, respectively. A good correlation was obtained between the contents of disialogangliosides and the binding level of the antibodies; both melanoma and neuroblastoma cells with larger amounts of GD2/GD3 showed a higher level of antibody binding than did the cells with a smaller amount of GD2/GD3. Surprisingly, ADCC did not correlate well with the binding level of the antibodies. Thus, A1-425 showed stronger lytic activity than A1-267 in spite of the binding level of A1-425 being similar to or lower than that of A1-267 on the cell surfaces. Antigen-antibody complexes composed of GD2 and A1-425 showed higher binding levels to LGL than complexes of GD2 and A1-267. In contrast, free MAb molecules gave minimum binding to LGL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A novel disialoganglioside 2 (GD2)-specific chimeric antigen receptor (CAR)-modified T cell therapy against retinoblastoma (RB) were generated. GD2-CAR consists of a single-chain variable fragment (scFv) derived from a monoclonal antibody, hu3F8, that is linked with the cytoplasmic signaling domains of CD28, 41BB, a CD3ζ, and an inducible caspase 9 death fusion partner. GD2 antigen is highly expressed in Y79RB cell line and in several surgical RB tumor specimens. In vitro co-culture experiments revealed the effective killing of Y79RB cells by GD2-CAR T cells, but not by control CD19-CAR T cells. The killing activities of GD2-CAR T cells were diminished when repeatedly exposed to the tumor, due to an attenuated expression of GD2 antigen on tumor cells and upregulation of inhibitory molecules of the PD1 and PD-L1 axis in the CAR T cells and RB tumor cells respectively. This is the first report to describe the potential of GD2-CAR T cells as a promising therapeutic strategy for RB with the indication of potential benefit of combination therapy with immune checkpoint inhibitors.  相似文献   

20.
Liang YY  Zhang LM 《Biomacromolecules》2007,8(5):1480-1486
Functionalized Fe3O4 nanoparticles decorated with carboxymethylated chitosan were developed and used as a novel magnetic support for the covalent conjugation of papain, one of the most important industrial proteases. The analyses of transmission electron micrographs (TEM) and X-ray diffraction (XRD) showed that the size and structure of functionalized Fe3O4 nanoparticles had no significant changes after conjugation with papain. Magnetic measurement revealed that the resultant papain-conjugated nanoparticles were superparamagnetic with a saturation magnetization of 59.3 emu/g. Analyses of Fourier transform infrared (FTIR) spectroscopy and measurement of zeta potentials confirmed the conjugation of papain with the functionalized Fe3O4 nanoparticles. Compared with the native papain, the conjugated papain was found to exhibit enhanced enzyme activity, better tolerance to the variations of medium pH and temperature, and improved storage stability as well as good reusability. Considering that the magnetic separation technique possesses the advantages of rapidity, high efficiency, cost-effectiveness, and lack of negative effect on biological activity, such a bioconjugate system may hold potential applications in food, pharmaceutical, leather, cosmetic, and textile industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号