首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of susceptible strains of mice with Daniel's (DA) strains of Theiler's murine encephalomyelitis virus (DAV) results in virus persistence in the central nervous system (CNS) white matter and chronic demyelination similar to that observed in multiple sclerosis. We investigated whether persistence is due to the immune system more efficiently clearing DAV from gray than from white matter of the CNS. Severe combined immunodeficient (SCID) and immunocompetent C.B-17 mice were infected with DAV to determine the kinetics, temporal distribution, and tropism of the virus in CNS. In early disease (6 h to 7 days postinfection), DAV replicated with similar kinetics in the brains and spinal cords of SCID and immunocompetent mice and in gray and white matter. DAV RNA was localized within 48 h in CNS cells of all phenotypes, including neurons, oligodendrocytes, astrocytes, and macrophages/microglia. In late disease (13 to 17 days postinfection), SCID mice became moribund and permitted higher DAV replication in both gray and white matter. In contrast, immunocompetent mice cleared virus from the gray matter but showed replication in the white matter of their brains and spinal cords. Reconstitution of SCID mice with nonimmune splenocytes or anti-DAV antibodies after establishment of infection demonstrated that both cellular and humoral immune responses decreased virus from the gray matter; however, the cellular responses were more effective. SCID mice reconstituted with splenocytes depleted of CD4+ or CD8+ T lymphocytes cleared virus from the gray matter but allowed replication in the white matter. These studies demonstrate that both neurons and glia are infected early following DAV infection but that virus persistence in the white matter is due to preferential clearance of virus from the gray matter by the immune system.  相似文献   

2.
Neutralizing anti-tumor necrosis factor alpha (TNF-alpha) antibody treatment of mice infected with the neurotropic JHMV strain of mouse hepatitis virus showed no reduction of either virus-induced encephalomyelitis or central nervous system demyelination. TNF-alpha-positive cells were present in the central nervous system during infection; however, TNF-alpha could not be colocalized with JHMV-infected cells. In vitro, TNF-alpha mRNA rapidly accumulated following JHMV infection; however, no TNF-alpha was secreted because of inhibition of translation. Both live and UV-inactivated virus inhibited TNF-alpha secretion induced by lipopolysaccharide. These data show that TNF-alpha is not secreted from infected cells and indicate that if contributes to either JHMV-induced acute encephalomyelitis nor primary demyelination.  相似文献   

3.
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.  相似文献   

4.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.  相似文献   

5.
Following intracranial inoculation, Theiler's virus causes either an acute encephalitis (strain GDVII) or a chronic demyelinating disease (strain DA). The DA strain sequentially infects the grey matter of the brain, the grey matter of the spinal cord, and, finally, the white matter of the spinal cord, where it persists in glial cells and causes demyelinating lesions. Analysis of the phenotype of recombinant viruses has shown that the viral capsid contains determinants for persistence and demyelination. Our previous studies showed that a Lys at position 141 of the VP2 capsid protein (VP2-141) could render a chimeric virus persistent. We also reported that another recombinant virus, virus R5, migrated from the grey matter of the brain to that of the spinal cord inefficiently and was unable to infect the white matter of the spinal cord. In this article, we report that introducing a Lys at position VP2-141 in virus R5 increases its ability to infect the white matter of the spinal cord. Our results indicate that this amino acid is important for the spread of the virus within the central nervous system.  相似文献   

6.
Role of macrophages during Theiler's virus infection.   总被引:11,自引:8,他引:3       下载免费PDF全文
Theiler's virus, a murine picornavirus, causes a persistent infection of the central nervous system with chronic inflammation and primary demyelination. We examined the nature of infected cells at different times postinoculation (p.i.) with a combined immunocytochemistry-in situ hybridization assay. The virus was found in the gray matter of the brain, mostly in neurons, during the first week p.i. During the following weeks, the virus was present in the spinal cord, first in the gray and white matter, then exclusively in the white matter. Approximately 10% of infected cells were astrocytes at any time during the study. Infected oligodendrocytes were first noticed on day 14 p.i. and amounted to approximately 6% of infected cells. The number of infected macrophages increased with time and reached a plateau by day 21 p.i., when at least 45% of infected cells were macrophages. The role of blood-borne macrophages during infection was studied by depleting them with mannosylated liposomes containing dichloromethylene diphosphonate. The virus did not persist in the majority of the mice treated with liposomes. These mice showed only minimal mononuclear cell infiltration and no demyelination.  相似文献   

7.
Theiler's virus is a neurotropic murine picornavirus which, depending on the strain, causes either an acute encephalitis or a persistent demyelinating disease. Following intracranial inoculation, the demyelinating strains infect sequentially the grey matter of the brain, the grey matter of the spinal cord, and finally the white matter of the spinal cord, where they persist and cause chronic demyelination. The neurovirulent strains cause a generally fatal encephalitis with lytic infection of neurons. The study of chimeric Theiler's viruses, obtained by recombining the genomes of demyelinating and neurovirulent strains, has shown that the viral capsid contains determinants for persistence and demyelination. In this article we describe the recombinant virus R5, in which the capsid protein VP1 and a small portion of protein 2A come from the neurovirulent GDVII strain and the rest of the genome comes from the persistent DA strain. The capsid of virus R5 also contains one mutation at amino acid 34 of VP3 (Asn-->His). Virus R5 does not persist in the central nervous system (CNS) of immunocompetent SJL/J or BALB/c mice. However, it replicates efficiently and persists in the CNS of BALB/c nu/nu mice, showing that its growth in the CNS is not impaired. In BALB/c nu/nu mice, whereas virus DA causes mortality with large amounts of viral antigens in the white matter of the spinal cord, virus R5 does not kill the animals, persists in the neurons of the grey matter of the brain, and never reaches the white matter of the spinal cord. This phenotype is due to the chimerism of the capsid and/or to the mutation in VP3. These results indicate that the capsid plays an important role in the characteristic migration of Theiler's virus within the CNS.  相似文献   

8.
Theiler's virus infection induces a specific cytotoxic T lymphocyte response   总被引:10,自引:0,他引:10  
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible mouse strains and causes chronic inflammation and primary demyelination. One of the current hypotheses is that demyelination is, at least in part, mediated by virus-specific cytotoxic T lymphocytes (CTL). However, it is generally assumed that picornaviruses do not induce CTL. In point of fact, their existence has only been demonstrated for Coxsackievirus B-3. To determine whether Theiler's virus induces a CTL response, we generated a murine mastocytoma cell line stably transfected with the coding region of the genome of Theiler's virus strain DA. Using these cells as targets we showed that infected DBA/2 mice, a susceptible strain, produce cytotoxic T lymphocytes. The cytotoxic activity was Theiler's-virus specific. It was for the most part mediated by CD8+ T lymphocytes and H-2 restricted. This is the first demonstration that a specific CTL response is generated during Theiler's virus infection.  相似文献   

9.
We evaluated the role of gamma interferon (IFN-gamma) in protecting neurons from virus-induced injury following central nervous system infection. IFN-gamma(-/-) and IFN-gamma(+/+) mice of the resistant major histocompatibility complex (MHC) H-2(b) haplotype and intracerebrally infected with Theiler's murine encephalomyelitis virus (TMEV) cleared virus infection from anterior horn cell neurons. IFN-gamma(+/+) H-2(b) mice also cleared virus from the spinal cord white matter, whereas IFN-gamma(-/-) H-2(b) mice developed viral persistence in glial cells of the white matter and exhibited associated spinal cord demyelination. In contrast, infection of IFN-gamma(-/-) mice of the susceptible H-2(q) haplotype resulted in frequent deaths and severe neurologic deficits within 16 days of infection compared to the results obtained for controls. Morphologic analysis demonstrated severe injury to spinal cord neurons in IFN-gamma(-/-) H-2(q) mice during early infection. More virus RNA was detected in the brain and spinal cord of IFN-gamma(-/-) H-2(q) mice than in those of control mice at 14 and 21 days after TMEV infection. Virus antigen was localized predominantly to anterior horn cells in infected IFN-gamma(-/-) H-2(q) mice. IFN-gamma deletion did not affect the humoral response directed against the virus. However, the level of expression of CD4, CD8, class I MHC, or class II MHC in the central nervous system of IFN-gamma(-/-) H-2(q) mice was lower than those in IFN-gamma(+/+) H-2(q) mice. Finally, in vitro analysis of virus-induced death in NSC34 cells and spinal motor neurons showed that IFN-gamma exerted a neuroprotective effect in the absence of other aspects of the immune response. These data support the hypothesis that IFN-gamma plays a critical role in protecting spinal cord neurons from persistent infection and death.  相似文献   

10.
《Seminars in Virology》1993,4(3):181-186
Several host immune mechanisms are activated in the course of a herpes simplex virus infection. These include natural resistance mechanisms (natural killer cells and interferon), antiviral antibodies and effector CD4 and CD8 T lymphocytes. An important mechanism in the control of viral replication in epidermal cells involves the recruitment and activation of macrophages by CD4 T cells. In some instances, the action of CD4 T cells can lead to immune pathology following infection of the eye (stromal ketatitis) or central nervous system (demyelination). Despite the efficiency of the immune response in countering infection, the virus has evolved strategies to subvert the action of antibodies and complement and the detection of infected cells by cytotoxic T lymphocytes.  相似文献   

11.
Intracerebral inoculation of resistant mice (C57BL/10SNJ) with Theiler's murine encephalomyelitis virus (TMEV) results in acute encephalitis followed by subsequent clearance of virus from the central nervous system (CNS). In contrast, infection of susceptible mice (SJL/J) results in virus persistence and chronic immune-mediated demyelination. Both resistance and susceptibility to TMEV-induced disease appear to be immune mediated, since immunosuppression results in enhanced encephalitis in resistant mice but diminished demyelination in susceptible mice. The purpose of these experiments was to determine whether anti-TMEV cytotoxic T lymphocytes (CTLs) are generated during acute and chronic TMEV infection. Nonspecific lectin-dependent cellular cytotoxicity was used initially to detect the cytolytic potential of lymphocytes infiltrating the CNS irrespective of antigen specificity. Using TMEV-infected targets, H-2-restricted TMEV-specific CTLs of the CD8+ phenotype were demonstrated in lymphocytes from the CNS of susceptible and resistant mice, arguing against the hypothesis that the ability to generate CD8+ CTLs mediates resistance. In chronically infected SJL/J mice, TMEV-specific CTL activity was detected in the CNS as late as 226 days postinfection. These experiments demonstrate that virus-specific CTLs are present in the CNS during both acute and chronic TMEV infection. Anti-TMEV CTLs in the CNS of chronically infected SJL/J mice may play a role in demyelination through their ability to lyse TMEV-infected glial cells.  相似文献   

12.
The neurotropic JHM strain of mouse hepatitis virus (MHV) causes acute encephalitis and chronic demyelinating encephalomyelitis in rodents. Previous results indicated that CD8 T cells infiltrating the central nervous system (CNS) were largely antigen specific in both diseases. Herein we show that by 7 days postinoculation, nearly 30% of the CD4 T cells in the acutely infected CNS were MHV specific by using intracellular gamma interferon (IFN-gamma) staining assays. In mice with chronic demyelination, 10 to 15% of the CD4 T cells secreted IFN-gamma in response to MHV-specific peptides. Thus, these results show that infection of the CNS is characterized by a large influx of CD4 T cells specific for MHV and that these cells remain functional, as measured by cytokine secretion, in mice with chronic demyelination.  相似文献   

13.
Mice infected with the murine coronavirus, mouse hepatitis virus, strain JHM (MHV) develop an immune-mediated demyelinating encephalomyelitis. We showed previously that adoptive transfer of MHV-immune splenocytes depleted of either CD4 or CD8 T cells to infected RAG1(-/-) recipients (mice deficient in recombination activation gene 1) resulted in demyelination. Herein we show that transfer of CD8 T cell-enriched splenocytes from MHV-immune IFN-gamma(-/-) donors resulted in a substantial decrease in demyelination (4.8% of the white matter of the spinal cord compared with 26.3% in those receiving cells from C57BL/6 donors). Similar numbers of lymphocytes were present in the CNS of recipients of either C57BL/6 or IFN-gamma(-/-) CD8 T cells, suggesting that IFN-gamma was not crucial for lymphocyte entry into the CNS. Rather, IFN-gamma was critical for optimal activation or migration of macrophages or microglia into the white matter in the context of CD8 T cell-mediated demyelination.  相似文献   

14.
Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of susceptible strains of mice results in wide-spread replication within glial cells accompanied by infiltration of virus-specific T lymphocytes that control virus through cytokine secretion and cytolytic activity. Virus persists within white matter tracts of surviving mice resulting in demyelination that is amplified by inflammatory T cells and macrophages. In response to infection, numerous cytokines/chemokines are secreted by resident cells of the CNS and inflammatory leukocytes that participate in both host defense and disease. Among these are the ELR-positive chemokines that are able to signal through CXC chemokine receptors including CXCR2. Early following JHMV infection, ELR-positive chemokines contribute to host defense by attracting CXCR2-expressing cells including polymorphonuclear cells to the CNS that aid in host defense through increasing the permeability the blood-brain-barrier (BBB). During chronic disease, CXCR2 signaling on oligodendroglia protects these cells from apoptosis and restricts the severity of demyelination. This review covers aspects related to host defense and disease in response to JHMV infection and highlights the different roles of CXCR2 signaling in these processes.  相似文献   

15.
Mice infected with mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating encephalomyelitis that is in large part immune mediated. Potential mechanisms of immune activity were assessed using an adoptive transfer system. Mice deficient in recombinase-activating gene function (RAG1(-/-)), defective in B- and T-cell maturation, become persistently infected with MHV but do not develop demyelination. Adoptive transfer of splenocytes from mice immunized to MHV into RAG1(-/-) mice infected with an attenuated strain of the virus results in the rapid and progressive development of demyelination. Most striking, adoptive transfer resulted, within 5 to 6 days, in extensive recruitment of activated macrophages/microglia to sites of demyelination within the spinal cord. Clearance of virus antigen occurred preferentially from the gray matter of the spinal cord. Apoptotic cells were identified in both the gray and white matter of the central nervous system (CNS) from RAG1(-/-) mice before and after adoptive transfer, with a moderate increase in number, but not distribution, of apoptotic cells following the development of demyelination. These results suggest that apoptosis following MHV-JHM infection of the murine CNS is not sufficient to cause demyelination. These results, showing that macrophage recruitment and myelin destruction occur rapidly after immune reconstitution of RAG(-/-) mice, suggest that this will be a useful system for investigating MHV-induced demyelination.  相似文献   

16.
Infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus produces acute and chronic demyelination. The contributions of perforin-mediated cytolysis and gamma interferon (IFN-gamma) secretion by CD8(+) T cells to the control of infection and the induction of demyelination were examined by adoptive transfer into infected SCID recipients. Untreated SCID mice exhibited uncontrolled virus replication in all CNS cell types but had little or no demyelination. Memory CD8(+) T cells from syngeneic wild-type (wt), perforin-deficient, or IFN-gamma-deficient (GKO) donors all trafficked into the infected CNS in the absence of CD4(+) T cells and localized to similar areas. Although CD8(+) T cells from all three donors suppressed virus replication in the CNS, GKO CD8(+) T cells expressed the least antiviral activity. A distinct viral antigen distribution in specific CNS cell types revealed different mechanisms of viral control. While wt CD8(+) T cells inhibited virus replication in all CNS cell types, cytolytic activity in the absence of IFN-gamma suppressed the infection of astrocytes, but not oligodendroglia. In contrast, cells that secreted IFN-gamma but lacked cytolytic activity inhibited replication in oligodendroglia, but not astrocytes. Demyelination was most severe following viral control by wt CD8(+) T cells but was independent of macrophage infiltration. These data demonstrate the effective control of virus replication by CD8(+) T cells in the absence of CD4(+) T cells and support the necessity for the expression of distinct effector mechanisms in the control of viral replication in distinct CNS glial cell types.  相似文献   

17.
Intracerebral inoculation of mice with Theiler's murine encephalomyelitis virus results in an intense inflammatory response of mononuclear leukocytes which infiltrate into the central nervous system. Resistant strains of mice have the ability to clear virus whereas susceptible strains become infected persistently and are associated with chronic demyelination which is proposed to be immune-mediated. In an attempt to better understand the role of the immune response during demyelination, mononuclear leukocytes were isolated from the central nervous system of infected mice and stained by an immunoperoxidase technique with anti-Thy-1.2, anti-L3T4, anti-Lyt-2 and anti-MAC-1 mAb. Infection of susceptible SJL/J mice resulted in a biphasic immune response which peaked on days 7 and 27 post-infection. In contrast, a single peak (day 7) was observed in resistant C57BL/10SNJ mice. The presence of Thy-1.2, L3T4, and MAC-1+ cells was similar between the two strains. However, although the number of Lyt-2+ cells peaked on day 7 in C57BL/10SNJ mice, they were not detected in SJL/J mice until 14 days post-infection and gradually increased in number over the course of infection. To further study the role of T cells in demyelination, serial frozen sections of brain and spinal cord were stained for the presence of Lyt-2 and L3T4+ cells in the lesions of chronically infected SJL/J mice. L3T4+ cells were observed predominantly in perivascular regions while Lyt-2+ cells were observed infiltrating the parenchyma. These results provide further evidence that Lyt-2+ lymphocytes are important in the mechanism of susceptibility/resistance to Theiler's murine encephalomyelitis virus-induced demyelination.  相似文献   

18.
C P Rossi  E Cash  C Aubert    A Coutinho 《Journal of virology》1991,65(7):3895-3899
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible strains of mice, causing chronic inflammation and demyelination in the white matter of the spinal cord. Resistant strains, however, clear the virus and do not develop late disease. In this study, we compared the characteristics of T and B lymphocytes in C57BL/6 (resistant) and SJL/J (susceptible) mice 1 week after intracerebral infection. We detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 mice (but not in those of SJL/J mice), which correlated with higher levels of serum IgM antiviral antibodies. The role of the humoral response in virus clearance and resistance was demonstrated by a marked decrease in the number of infected spinal cord cells in SJL/J mice after passive transfer of serum from infected C57BL/6 donors. The B-cell response was found to be partly T cell independent. These results suggest an important role of the early humoral immune response in resistance to Theiler's virus-induced disease.  相似文献   

19.
Kim TS  Perlman S 《Journal of virology》2005,79(11):7113-7120
Mouse hepatitis virus strain JHM causes a chronic demyelinating disease in susceptible strains of rodents. Demyelination does not develop in infected RAG1-/- (recombination activation gene-deficient) mice but can be induced by several experimental interventions, including adoptive transfer of virus-specific T cells or antibodies. A common feature of demyelination in these models is extensive infiltration of macrophages/microglia into the white matter. The data obtained thus far do not indicate whether macrophage/microglia infiltration, in the absence of T cells or antibody, is sufficient to mediate demyelination. To determine whether the expression of a single macrophage chemoattractant, in the context of virus infection, could initiate the demyelinating process, we engineered a recombinant coronavirus that expressed the chemokine CCL2/monocyte chemoattractant protein-1. CCL2 has been implicated in macrophage infiltration into the central nervous system and is involved in demyelination in many experimental models of demyelination. Extensive macrophage/microglia infiltration and demyelination has developed in RAG1-/- mice infected with this recombinant virus. Thus, these results suggest that the minimal requirement for demyelination is increased expression of a single macrophage-attracting chemokine in the context of an inflammatory milieu, such as that induced by a viral infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号