首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the presented study was determined the effectiveness of sporicidal activity the peracetic acid and the hydrogen peroxide against B. anthracis spores. In the investigations was used B. anthracis stain "Sterne" 34F2. As inactivators were applied 0,5 % natriumthiosulphate and catalase. The obtained results show that the sporicidal effect of studied substances depends from their concentration and operates time. 5% water solution of peracetic acid shows the full sporicidal activity after outflow 120 minutes and the hydrogen peroxide about concentration 30% after outflow 180 minutes. However the hydrogen peroxide.  相似文献   

2.
The extractable protein antigens EA1 and EA2 of Bacillus anthracis were prepared from electrophoresis transblots of SDS extracts of vegetative bacteria of the Sterne strain. Hyperimmune guinea-pig antiserum against EA2 failed to react with B. anthracis cells in immunofluorescence (IF) tests. Guinea-pig antiserum against EA1 (anti-EA1) reacted strongly in IF tests with non-encapsulated vegetative cell of 10 of 12 strains of B. anthracis and with cells of strains of B. cereus and B. thuringiensis. The unreactive B. anthracis strains were delta-Vollum-1B-1 and Texas. Encapsulated cells of B. anthracis stained poorly except for small bright regions. Absorption of anti-EA1 with cells of B. cereus NCTC 8035 and NCTC 9946 removed activity towards all B. cereus strains tested, but only partly reduced cross-reaction with B. thuringiensis strains. Absorption of anti-EA1 with B. thuringiensis 4041 removed activity towards this strain and B. cereus strains. Evidence is produced that B. thuringiensis cells grown on nutrient agar possess more cross-reacting antigens than cells grown in nutrient broth. The reaction of anti-EA1 with Bacillus spores immobilized in clumps on microscope slides was attributed to contaminating vegetative debris because well-separated individual spores failed to react. A rapid IF test was developed allowing identification of B. anthracis sampled from overnight cultures on blood plates. When sodium dodecyl sulphate extracts of B. anthracis vegetative cells were analysed on immunoblots (Western blots) by reaction with anti-EA1, a number of bands were visualized in addition to the expected 91 kiloDalton EA1 band. Prior absorption of anti-EA1 with B. cereus or B. thuringiensis cells resulted in the disappearance of most or all of the brands in blots of these species, but had less effect on blots of the B. anthracis strains. All six B. anthracis strains that were blotted including delta-Vollum-1B-1 and Texas, could thus be distinguished from B. cereus and B. thuringiensis by their differential reaction with unabsorbed and absorbed anti-EA1.  相似文献   

3.
4.
The genome of Bacillus anthracis is extremely monomorphic, and thus individual strains have often proven to be recalcitrant to differentiation at the molecular level. Long-range repetitive element polymorphism-PCR (LR REP-PCR) was used to differentiate various B. anthracis strains. A single PCR primer derived from a repetitive DNA element was able to amplify variable segments of a bacterial genome as large as 10 kb. We were able to characterize five genetically distinct groups by examining 105 B. anthracis strains of diverse geographical origins. All B. anthracis strains produced fingerprints comprising seven to eight bands, referred to as “skeleton” bands, while one to three “diagnostic” bands differentiated between B. anthracis strains. LR REP-PCR fingerprints of B. anthracis strains showed very little in common with those of other closely related species such as B. cereus, B. thuringiensis, and B. mycoides, suggesting relative heterogeneity among the non-B. anthracis strains. Fingerprints from transitional non-B. anthracis strains, which possessed the B. anthracis chromosomal marker Ba813, scarcely resembled those observed for any of the five distinct B. anthracis groups that we have identified. The LR REP-PCR method described in this report provides a simple means of differentiating B. anthracis strains.  相似文献   

5.
Bacillus cereus strains that are genetically closely related to B. anthracis can display anthrax-like virulence traits (A. R. Hoffmaster et al., Proc. Natl. Acad. Sci. USA 101:8449-8454, 2004). Hence, approaches that rapidly identify these “near neighbors” are of great interest for the study of B. anthracis virulence mechanisms, as well as to prevent the use of such strains for B. anthracis-based bioweapon development. Here, a strategy is proposed for the identification of near neighbors of B. anthracis based on single nucleotide polymorphisms (SNP) in the 16S-23S rRNA intergenic spacer (ITS) containing tRNA genes, characteristic of B. anthracis. By using restriction site insertion-PCR (RSI-PCR) the presence of two SNP typical of B. anthracis was screened in 126 B. cereus group strains of different origin. Two B. cereus strains and one B. thuringiensis strain showed RSI-PCR profiles identical to that of B. anthracis. The sequencing of the entire ITS containing tRNA genes revealed two of the strains to be identical to B. anthracis. The strict relationship with B. anthracis was confirmed by multilocus sequence typing (MLST) of four other independent loci: cerA, plcR, AC-390, and SG-749. The relationship to B. anthracis of the three strains described by MLST was comparable and even higher to that of four B. cereus strains associated with periodontitis in humans and previously reported as the closest known strains to B. anthracis. SNP in ITS containing tRNA genes combined with RSI-PCR provide a very efficient tool for the identification of strains closely related to B. anthracis.  相似文献   

6.

Background  

Bacillus anthracis, Bacillus thuringiensis and Bacillus cereus are closely related members of the B. cereus-group of bacilli. Suppressive subtractive hybridization (SSH) was used to identify specific chromosomal sequences unique to B. anthracis.  相似文献   

7.
8.
Bacillus anthracis can be identified by detecting virulence factor genes located on two plasmids, pXO1 and pXO2. Combining multiplex PCR with arrayed anchored primer PCR and biotin-avidin alkaline phosphatase indicator system, we developed a qualitative DNA chip method for characterization of B. anthracis, and simultaneous confirmation of the species identity independent of plasmid contents. The assay amplifies pag gene (in pXO1), cap gene (in pXO2) and Ba813 gene (a B. anthracis specific chromosomal marker), and the results were indicated by an easy-to-read profile based on the color reaction of alkaline phosphatase. About 1 pg of specific DNA fragments on the chip wells could be detected after PCR. With the proposed method, the avirulent (pXO1+/2-, pXO1-/2+ and pXO1-/2-) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria were unambiguously identified, while the genera other than Bacillus gave no positive signal.  相似文献   

9.
Aims:  This study evaluated the inactivation of Bacillus anthracis Vollum spores dried on a nonporous surface using a superabsorbent polymer (SAP) gel containing commercially available liquid decontaminants.
Methods and Results:  The first phase determining the availability of the liquid decontaminant within the SAP showed that the SAP gel containing pH-adjusted sodium hypochlorite (NaOCl) inhibited B. anthracis growth while the water control SAP gel had no affect on growth. For testing surface decontamination, B. anthracis spores were dried onto steel coupons painted with chemical agent resistant coating and exposed to SAP containing either pH-adjusted NaOCl, chlorine dioxide (ClO2) or hydrogen peroxide/peracetic acid (H2O2/PA) for 5 and 30 min. At contact times of both 5 and 30 min, all of the SAP gels containing pH-adjusted NaOCl, ClO2 or H2O2/PA inactivated B. anthracis spores at levels ranging from 2·2 to ≥7·6 log reductions.
Conclusions:  Incorporation of three commercially available decontaminant technologies into a SAP gel promotes inactivation of B. anthracis spores without observable physical damage to the test surface.
Significance and Impact of the Study:  This work provides preliminary data for the feasibility of using SAP in inactivating B. anthracis spores on a nonporous surface, supporting the potential use of SAP in surface decontamination.  相似文献   

10.
Protective antigen (PA), the binding subunit of anthrax toxin, is the major component in the current anthrax vaccine, but the fine antigenic structure of PA is not well defined. To identify linear neutralizing epitopes of PA, 145 overlapping peptides covering the entire sequence of the protein were synthesized. Six monoclonal antibodies (mAbs) and antisera from mice specific for PA were tested for their reactivity to the peptides by enzyme-linked immunosorbent assays. Three major linear immunodominant B-cell epitopes were mapped to residues Leu156 to Ser170, Val196 to Ile210, and Ser312 to Asn326 of the PA protein. Two mAbs with toxin-neutralizing activity recognized two different epitopes in close proximity to the furin cleavage site in domain 1. The three-dimensional complex structure of PA and its neutralizing mAbs 7.5G and 19D9 were modeled using the molecular docking method providing models for the interacting epitope and paratope residues. For both mAbs, LeTx neutralization was associated with interference with furin cleavage, but they differed in effectiveness depending on whether they bound on the N- or C-terminal aspect of the cleaved products. The two peptides containing these epitopes that include amino acids Leu156–Ser170 and Val196–Ile210 were immunogenic and elicited neutralizing antibody responses to PA. These results identify the first linear neutralizing epitopes of PA and show that peptides containing epitope sequences can elicit neutralizing antibody responses, a finding that could be exploited for vaccine design.Bacillus anthracis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that secretes a variety of toxins, including anthrax toxin. This toxin is made up of three proteins as follows: protective antigen (PA),3 edema factor (EF), and lethal factor (LF). Like other binary toxins, anthrax toxin follows the same pattern where distinct subunits are involved in the different steps at which it can act. The B subunit (PA) is involved in receptor binding and cellular internalization into the cytoplasm, whereas the A subunit (EF and/or LF) bears the enzymatic activity (1). Anthrax can occur naturally in animals by spore transmission via ingestion, inhalation, or an open skin wound, but it can also be a result of bioterrorism and biological warfare (2).PA is the component of the currently licensed anthrax vaccine that elicits protective antibodies. Recent studies have demonstrated that a strong humoral response to truncated recombinant PA contributes to a protective immune response to anthrax (3, 4). Accordingly, there is considerable interest in ascertaining the location and immunogenicity of B-cell epitopes on the PA molecule. The development of numerous monoclonal antibodies (mAbs) to different epitopes on the PA molecule that influence PA functions, in conjunction with epitope mapping, has provided an opportunity to study the fine antigenic structure of PA. Most of these epitopes have been defined in mice (58), in macaques (9), in rabbits (10), as well as in vaccinated humans (11). Consequently, the epitopes described thus far are localized to three discrete regions within the PA. These regions correspond to the 2β2–2β3 loop of domain 2, the domain 3-domain 4 boundary, and the small loop of domain 4. The 2β2–2β3 loop of domain 2 is responsible for mediating membrane insertion, and many neutralizing murine mAbs target this region (5, 8). The boundary between domains 3 and 4, which does not have a known functional activity, has been suggested as a region recognized by polyclonal antibodies from vaccinated humans and rabbits (6, 12). The cellular receptor binding region is localized to the small loop of domain 4, and this region has been described to be recognized by two neutralizing mAbs (7, 9). With the exception of a neutralizing mAb that bound to PA20 (13), no B-cell epitopes have been reported in domain 1. Therefore, identification of further dominant antigenic epitopes is pivotal for understanding the minimal immunogenic region of PA that will allow for precise direction of potent immune responses.Two mAbs to PA have been reported previously by our laboratory, one known as 7.5G binds to domain 1 and can neutralize the cytotoxic activity of lethal toxin (LeTx) (13). The other, mAb 10F4, binds to domain 4 and has weak neutralizing activity. In addition, we now describe four new anti-PA mAbs, of which only one neutralizes LeTx. The characterization of the B-cell epitopes in PA recognized by protective and nonprotective mAbs is important to better understand the antigenic structure of this toxin, and such information is potentially useful for the design of vaccines and passive immune therapies against B. anthracis. Because PA has been identified as an effective subunit vaccine, we wanted to identify the specific epitopes that provide the protection and use them as immunogens. Using mAbs and 145 overlapping peptides covering the entire sequence of PA, we identify the first linear neutralizing epitopes in domain 1 of PA, and we demonstrate that two peptides containing epitopes in domain 1 were capable of inducing strong LeTx-neutralizing antibody responses.  相似文献   

11.
12.
Surface disinfectants are part of broader preventive strategies preventing the transmission of bacteria, fungi and viruses in medical institutions. To evaluate their virucidal efficacy, these products must be tested with appropriate model viruses with different physico-chemical properties under conditions representing practical application in hospitals.The aim of this study was to evaluate a quantitative carrier assay. Furthermore, different putative model viruses like adenovirus type 5 (AdV-5) and different animal parvoviruses were evaluated with respect to their tenacity and practicability in laboratory handling. To evaluate the robustness of the method, some of the viruses were tested in parallel in different laboratories in a multi-center study. Different biocides, which are common active ingredients of surface disinfectants, were used in the test. After drying on stainless steel discs as the carrier, model viruses were exposed to different concentrations of three alcohols, peracetic acid (PAA) or glutaraldehyde (GDA), with a fixed exposure time of 5 minutes. Residual virus was determined after treatment by endpoint titration.All parvoviruses exhibited a similar stability with respect to GDA, while AdV-5 was more susceptible. For PAA, the porcine parvovirus was more sensitive than the other parvoviruses, and again, AdV-5 presented a higher susceptibility than the parvoviruses. All parvoviruses were resistant to alcohols, while AdV-5 was only stable when treated with 2-propanol. The analysis of the results of the multi-center study showed a high reproducibility of this test system.In conclusion, two viruses with different physico-chemical properties can be recommended as appropriate model viruses for the evaluation of the virucidal efficacy of surface disinfectants: AdV-5, which has a high clinical impact, and murine parvovirus (MVM) with the highest practicability among the parvoviruses tested.  相似文献   

13.
Classification and differentiation of Bacillus anthracis isolates by genetic markers play an important role in anthrax research. We used a PCR based method--Random Amplification of Polymorphic DNA (RAPD)--to identify genetic markers in B. anthracis strains. Twenty-five differential genetic markers were identified which divided the strains into five different groups. Three selected RAPD-markers were cloned and sequenced. The five RAPD-derived genotypes could be defined by integration of these three markers. This system offers a simple non-expensive method to classify B. anthracis strains in laboratories involved in the research of this bacterium.  相似文献   

14.
15.
Chlorine dioxide gas and vaporous hydrogen peroxide sterilant have been used in the cleanup of building interiors contaminated with spores of Bacillus anthracis. A systematic study, in collaboration with the U.S. Environmental Protection Agency, was jointly undertaken by the U.S. Army-Edgewood Chemical Biological Center to determine the sporicidal efficacies of these two fumigants on six building structural materials: carpet, ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. Critical issues related to high-throughput sample processing and spore recovery from porous and nonporous surfaces included (i) the extraction of spores from complex building materials, (ii) the effects of titer challenge levels on fumigant efficacy, and (iii) the impact of bioburden inclusion on spore recovery from surfaces and spore inactivation. Small pieces (1.3 by 1.3 cm of carpet, ceiling tile, wallboard, I-beam steel, and pinewood and 2.5 by 1.3 cm for cinder block) of the materials were inoculated with an aliquot of 50 μl containing the target number (1 × 106, 1 × 107, or 1 × 108) of avirulent spores of B. anthracis NNR1Δ1. The aliquot was dried overnight in a biosafety cabinet, and the spores were extracted by a combination of a 10-min sonication and a 2-min vortexing using 0.5% buffered peptone water as the recovery medium. No statistically significant drop in the kill efficacies of the fumigants was observed when the spore challenge level was increased from 6 log units to 8 log units, even though a general trend toward inhibition of fumigant efficacy was evident. The organic burden (0 to 5%) in the spore inoculum resulted in a statistically significant drop in spore recovery (at the 2 or 5% level). The effect on spore killing was a function of the organic bioburden amount and the material type. In summary, a high-throughput quantitative method was developed for determining the efficacies of fumigants, and the spore recoveries from five porous materials and one nonporous material ranged between 20 and 80%.Biological terrorism has become a major concern in the United States since the anthrax spore-tainted letters in the fall of 2001 resulted in contamination and closure of the U.S. Postal Service Curseen-Morris Processing and Distribution Center (Brentwood Post Office), the Hart Senate Office Building, and the American Media Inc. office building in Boca Raton, FL. The contamination of infrastructure posed an unprecedented challenge of decontaminating over 20,000,000 cubic feet (∼1 million sq. ft.) of combined building interior space (6). The incident required concerted action from the government of the United States and the private sector to develop technologies for building interior cleanup. A number of liquid (29) and gaseous (3) products were granted crisis exemptions under the Federal Insecticide, Fungicide, and Rodenticide Act by the U.S. Environmental Protection Agency (EPA) for use as sterilants against Bacillus anthracis spores, but their application and efficacy in the context of large three-dimensional spaces and complex building material surfaces were not fully understood. No products were (or currently are) registered for use in such applications, involving large volumes and complex (porous and nonporous) structural building materials.In early 2005, a systematic study of laboratory-scale decontamination of five porous surfaces (carpet, ceiling tile, cinder block, painted wallboard, and unpainted wood) and one nonporous surface (painted I-beam steel) was initiated by the U.S. EPA in collaboration with the U.S. Army Edgewood Chemical Biological Center (ECBC). The overall objective of this collaborative study was to systematically investigate the abilities of fumigants to effectively decontaminate building materials contaminated with anthrax spores. This unprecedented systematic investigation involved the determination of efficacy (or log reduction in the number of viable spores) as a function of fumigant technology, technology operating parameters (e.g., fumigant concentration and exposure time), environmental conditions (temperature and relative humidity [RH]), and building material types. The magnitude and scope of this study required that new methods be developed to incorporate the use of complex materials in sporicidal efficacy testing and the processing of an unprecedented number of complex samples.Current standardized sporicidal test methods include the Association of Official Analytical Chemists (AOAC International) sporicidal activity of disinfectant test (AOAC Official Method 966.04) (4) and the American Society for Testing and Materials (ASTM) 2414-05 (3) and quantitative carrier test (QCT) (2). All of these methods are based on testing hard-surface carrier-based spores, which are submerged in a disinfectant for a desired contact time, followed by the addition of a neutralizer and enumeration of viable spores recovered from the carrier. Almost all standard test methods for liquid disinfectants use small coupons, e.g., 5- by 5-mm squares or 1-cm discs, on which 1 million to 10 million (6 to 7 log) spores are inoculated. While AOAC Official Method 966.04 is qualitative, the other two test methods are quantitative and provide log reduction estimates. Currently, demonstration of a >6-log-unit inactivation of B. anthracis or an appropriate surrogate spore (e.g., Bacillus subtilis) using a quantitative test method, such as QCT, which is also known as ASTM 2197-02, or the three-step method (TSM), also known as ASTM 2414-05, by a decontaminant is a requirement for product registration as a sporicidal agent against spores of B. anthracis Ames (18).Key information on three critical issues was lacking at the start of this study. First, optimal spore extraction protocols that could be scaled to process over 200 samples per run (or day) were lacking. Second, the appropriate spore challenge level for fumigation studies was unknown, even though a range between 5 and 8 log spores/coupon has been used in a number of recent disinfection studies (12, 13, 14, 16, and 17). Finally, it was not known if protein serum (an organic burden is included in standard procedures, such as AOAC Official Method 966.04) should be included in the testing performed with the fumigants. The specific objectives of this study, therefore, were to (i) develop scalable coupon-processing/spore extraction protocols from six building materials that would result in recovery of >20% of the spores inoculated per coupon, (ii) investigate the effects of three spore challenge levels on spore extraction and the efficacy of chlorine dioxide (CD) gas and vaporous hydrogen peroxide (VHP), and, finally, (iii) investigate the effect of organic burden inclusion on spore recovery and sterilization using CD gas.  相似文献   

16.
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.Bacillus anthracis is a highly virulent bacterium, which is the etiologic agent of anthrax, an acute and often lethal disease of animals and humans (1). According to the Centers for Disease Control and Prevention, B. anthracis is classified as a category A agent, the highest rank of potential bioterrorism agents (http://www.bt.cdc.gov/agent/agentlist-category.asp). The infectious agent of anthrax, the spore, was used as a bioterrorism weapon in 2001 in the United States when mailed letters containing B. anthracis spores caused 22 cases of inhalational and/or cutaneous anthrax, five of which were lethal (2). These events have emphasized the need for rapid and accurate detection of B. anthracis spores.Bacillus anthracis is a member of the genus Bacillus, Gram-positive, rod-shaped bacteria characterized by the ability to form endospores under aerobic or facultative anaerobic conditions (3). The genus Bacillus is a widely heterogeneous group encompassing 268 validly described species to date (http://www.bacterio.net/b/bacillus.html, last accessed on August 9th 2013). B. anthracis is part of the B. cereus group which consists of six distinct species: B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. pseudomycoides, and B. weihenstephanensis (4, 5). The latter three species are generally regarded as nonpathogenic whereas B. cereus and B. thuringiensis could be opportunistic or pathogenic to mammals or insects (5, 6). B. cereus is a ubiquitous species that lives in soil but is also found in foods of plant and animal origin, such as dairy products (7). Its occurrence has also been linked to food poisoning and it can cause diarrhea and vomiting (6, 8). B. thuringiensis is primarily an insect pathogen, also present in soil, and often used as a biopesticide (9).B. anthracis is highly monomorphic, that is, shows little genetic variation (10), and primarily exists in the environment as a highly stable, dormant spore in the soil (1). Specific identification of B. anthracis is challenging because of its high genetic similarity (sequence similarity >99%) with B. cereus and B. thuringiensis (5, 11). The fact that these closely related species are rather omnipresent in the environment further complicates identification of B. anthracis. The main difference among these three species is the presence in B. anthracis of the two virulence plasmids pXO1 and pXO2 (1), which are responsible for its pathogenicity. pXO1 encodes a tripartite toxin (protective antigen (PA), lethal factor (LF), and edema factor (EF)) which causes edema and death (1), whereas pXO2 encodes a poly-γ-d-glutamate capsule which protects the organism from phagocytosis (1). B. anthracis identification often relies on the detection of the genes encoded by these two plasmids via nucleic acid-based assays (1214). Nevertheless, the occasionally observed loss of the pXO2 plasmid within environmental species may impair the robustness of detection (1). In addition, in recent years a series of findings has shown that the presence of pXO1 and pXO2 is not a unique feature of B. anthracis. Indeed, Hu et al. have demonstrated that ∼7% of B. cereus/B. thuringiensis species can have a pXO1-like plasmid and ∼1.5% a pXO2-like plasmid (15). This was particularly underlined for some virulent B. cereus strains (i.e. B. cereus strains G9241, B. cereus biovar anthracis strains CA and CI) (1620).Because of these potential drawbacks, the use of chromosome-encoded genes would be preferable for the specific detection of B. anthracis. Such genes (rpoB, gyrA, gyrB, plcR, BA5345, and BA813) have been reported as potential markers (2125), but concerns have also been raised about their ability to discriminate B. anthracis efficiently from closely related B. cereus strains (26). Ahmod et al. have recently pointed out, by in silico database analysis, that a specific sequence deletion (indel) occurs in the yeaC gene and exploited it for the specific identification of B. anthracis (27). Nevertheless, a few B. anthracis strains (e.g. B. anthracis A1055) do not have this specific deletion and so may lead to false-negative results (27).In the last few years, protein profiling by MS, essentially based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS), has emerged as an alternative (or a complement) to genotypic or phenotypic methods for the fast and efficient identification of microorganisms (28, 29). Such an approach is based on the reproducible acquisition of global bacterial protein fingerprints/patterns. The combination of MS-based protein patterns and chemometric/bioinformatic tools has been demonstrated to efficiently differentiate members of the B. cereus group from other Bacillus species (30). However, the specific discrimination of B. anthracis from the closely related B. cereus and B. thuringiensis remains difficult (30). This study of Lasch and coworkers, performed on vegetative cells, identified a few ribosomal and spore proteins as being responsible for this clustering (30). Closer inspection of the data revealed that B. anthracis identification was essentially based on one particular isoform of the small acid-soluble spore protein B (SASP-B)1 (3034), which is exclusively expressed in spores, as the samples were shown to contain residual spores. However, the specificity of SASP-B has recently been questioned as the published genomes of B. cereus biovar anthracis CI and B. thuringiensis BGSC 4CC1 strains have been shown to share the same SASP-B isoform as B. anthracis (35). Altogether these results underline that the quest for specific markers of B. anthracis needs to be pursued.Mass spectrometry also represents a powerful tool for the discovery and identification of protein markers (36, 37). In the case of B. anthracis, this approach has more commonly been used for the comprehensive characterization of given bacterial proteomes. For example, the proteome of vegetative cells with variable plasmid contents has been extensively studied (3840), as the proteomes of mature spores (41, 42) and of germinating spores (43, 44). Only one recent study, based on a proteo-genomic approach, was initiated to identify protein markers of B. anthracis (45). In this work, potential markers were characterized but using a very limited number of B. cereus group strains (three B. cereus and two B. thuringiensis). Moreover, this study was done on vegetative cells, whereas the spore proteome is drastically different. To our knowledge, no study has characterized and validated relevant protein markers specific to B. anthracis spores, which constitute the dissemination form of B. anthracis and are often targeted by first-line immunodetection methods (46).Here we report comparative proteomics analyses of Bacillus anthracis/cereus/thuringiensis spores, undertaken to identify proteoforms unique to B. anthracis. Preliminary identification was performed on a limited set of Bacillus species both at the peptide (after enzymatic digestion) and protein levels by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using a high resolution/high mass accuracy LTQ-Orbitrap instrument. The pertinence of 11 markers was further demonstrated using proteomics and genomics approaches on a representative larger set of up to 55 different strains, including the closely related B. cereus biovar anthracis CI, CA, and B. thuringiensis 9727. Lastly, as a proof-of-concept study, we also report for four B. anthracis markers the implementation of a targeted LC-MS/MS method using selected reaction monitoring (SRM), based on the extension of a previous one focused on SASP-B (35). Preliminary results regarding method usefulness for the high throughput and accurate detection of B. anthracis spores in complex samples were also obtained and will be reported herein.  相似文献   

17.
The development of SrtA inhibitors targeting the biothreat organism namely Bacillus anthracis was achieved by the combined approach of pharmacophore modeling, binding interactions, electron transferring capacity, ADME, and Molecular dynamics studies. In this study, experimentally reported Ba-SrtA inhibitors (pyridazinone and pyrazolethione derivatives) were considered for the development of enhanced pharmacophoric model. The obtained AAAHR hypothesis was a pure theoretical concept that accounts for common molecular interaction network present in experimentally active pyridazinone and pyrazolethione derivatives. Pharmacophore-based screening of AAAHR hypothesis provides several new compounds, and those compounds were treated with four phases of docking protocols with combined Glide-QPLD docking approach. In this approach, scoring and charge accuracy variations were seen to be dominated by QM/MM approach through the allocation of partial charges. Finally, we reported the best compounds from binding db, Chembridge db, and Toslab based on scoring values, energy parameters, electron transfer reaction, ADME, and cell adhesion inhibition activity. The dynamic state of interaction and binding energy assess that new compounds are more active inside the binding pocket and these compounds on experimental validations will survive as better inhibitors for targeting the cell adhesion mechanism of Ba-SrtA.  相似文献   

18.
19.
Certain carbohydrates (rhamnose, 3-O-methyl rhamnose, and galactosamine) have been demonstrated to be present in Bacillus anthracis spores but absent in vegetative cells. Others have demonstrated that these spore-specific sugars are constituents of the glycoprotein BclA. In the current work, spore extracts were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A second collagen-like glycoprotein, BclB, was identified in B. anthracis. The protein moiety of this glycoprotein was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and the carbohydrate components by gas chromatography-mass spectrometry and tandem mass spectrometry. Spore-specific sugars were also demonstrated to be components of BclB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号