首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the genetic architecture of floral development, including the origin and subsequent diversification of the flower, data are needed not only for a few model organisms but also for gymnosperms, basal angiosperm lineages and early-diverging eudicots. We must link what is known about derived model plants such as Arabidopsis, snapdragon and maize with other angiosperms. To this end, we suggest a massive evolutionary genomics effort focused on the identification and expression patterns of floral genes and elucidation of their expression patterns in ‘missing-link’ taxa differing in the arrangement, number and organization of floral parts.  相似文献   

2.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

3.
马利超  王彦荣  刘志鹏 《遗传》2012,34(5):621-634
蒺藜苜蓿(Medicago truncatula G.)花器官特异表达基因是参与其花器官形成与发育的重要基因。筛选蒺藜苜蓿的花器官特异表达基因, 寻找这类基因在其他模式植物中的直系同源基因, 并将其表达模式在不同植物间进行比较, 有利于深入的理解这类基因在蒺藜苜蓿花器官发育中的功能。根据蒺藜苜蓿表达谱, 并以其PISTILLATA(PI)基因为模板, 文章筛选了97个蒺藜苜蓿花器官特异表达基因(Ratio≥10, 且Z≥7.9)。通过同源比对, 确定了这类基因在拟南芥(Arabidopsis thaliana L.)、大豆(Glycine max L.)、百脉根(Lotus japonicus L.)和水稻(Oryza sativa L.)中的直系同源基因。对这类基因在5种植物中的表达量、表达部位和功能进行比较, 发现进化关系较近的植物, 直系同源基因的表达变异较小, 而进化关系较远的植物, 直系同源基因的表达变异较大。进一步对表达分化较大的直系同源基因进行启动子分析, 发现不同植物中直系同源基因表达模式的变化与启动子中调控元件的特性有关。  相似文献   

4.
Ma LC  Wang YR  Liu ZP 《遗传》2012,34(5):621-634
蒺藜苜蓿(Medicago truncatula G)花器官特异表达基因是参与其花器官形成与发育的重要基因。筛选蒺藜苜蓿的花器官特异表达基因,寻找这类基因在其他模式植物中的直系同源基因,并将其表达模式在不同植物间进行比较,有利于深入的理解这类基因在蒺藜苜蓿花器官发育中的功能。根据蒺藜苜蓿表达谱,并以其PISTILLAZA(PI)基因为模板,文章筛选了97个蒺藜苜蓿花器官特异表达基因(Ratio≥10,且Z≥7.9).通过同源比对,确定了这类基因在拟南芥(Arabidopsis thaliana L.)、大豆(Glycinemax L.)、百脉根(Lotusjaponicus L.)和水稻(Oryzasativa L.)中的直系同源基因。对这类基因在5种植物中的表达量、表达部位和功能进行比较,发现进化关系较近的植物,直系同源基因的表达变异较小,而进化关系较远的植物,直系同源基因的表达变异较大。进一步对表达分化较大的直系同源基因进行启动子分析,发现不同植物中直系同源基因表达模式的变化与启动子中调控元件的特性有关。  相似文献   

5.
6.
Through multifaceted genome-scale research involving phylogenomics, targeted gene surveys, and gene expression analyses in diverse basal lineages of angiosperms, our studies provide insights into the most recent common ancestor of all extant flowering plants. MADS-box gene duplications have played an important role in the origin and diversification of angiosperms. Furthermore, early angiosperms possessed a diverse tool kit of floral genes and exhibited developmental 'flexibility', with broader patterns of expression of key floral organ identity genes than are found in eudicots. In particular, homologs of B-function MADS-box genes are more broadly expressed across the floral meristem in basal lineages. These results prompted formulation of the 'fading borders' model, which states that the gradual transitions in floral organ morphology observed in some basal angiosperms (e.g. Amborella) result from a gradient in the level of expression of floral organ identity genes across the developing floral meristem.  相似文献   

7.
8.

Background

The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels.

Methodology/Principal Findings

We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource).

Conclusions/Significance

Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.  相似文献   

9.
Although the regulation of Arabidopsis floral meristem patterning and determinacy has been studied in detail, very little is known about the genetic mechanisms directing development of the pedicel, the short stem linking the flower to the inflorescence axis. Here, we provide evidence that the pedicel consists of a proximal portion derived from the young flower primordium, and a bulged distal region that emerges from tissue at the bases of sepals in the floral bud. Distal pedicel growth is controlled by the KNOTTED1-like homeobox gene BREVIPEDICELLUS (BP), as 35S::BP plants show excessive proliferation of pedicel tissue, while loss of BP conditions a radial constriction around the distal pedicel circumference. Mutant radial constrictions project proximally along abaxial and lateral sides of pedicels, leading to occasional downward bending at the distal pedicel. This effect is severely enhanced in a loss-of-function erecta (er) background, resulting in radially constricted tissue along the entire abaxial side of pedicels and downward-oriented flowers and fruit. Analysis of pedicel vascular patterns revealed biasing of vasculature towards the abaxial side, consistent with a role for BP and ER in regulating a vascular-borne growth inhibitory signal. BP expression in a reporter line marked boundaries between the inflorescence stem and lateral organs and the receptacle and floral organs. This boundary expression appears to be important to prevent homeotic displacement of node and lateral organ fates into underlying stem tissue. To investigate interactions between pedicel and flower development, we crossed bp er into various floral mutant backgrounds. Formation of laterally-oriented bends in bp lfy er pedicels paralleled phyllotaxy changes, consistent with a model where the architecture of mutant stems is controlled by both organ positioning and vasculature patterns. Collectively, our results indicate that the BP gene acts in Arabidopsis stems to confer a growth-competent state that counteracts lateral-organ associated asymmetries and effectively radializes internode and pedicel growth and differentiation patterns.  相似文献   

10.
11.
Floral organ identity genes in the orchid Dendrobium crumenatum   总被引:1,自引:0,他引:1  
Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown. To investigate the regulatory mechanisms underlying orchid flower development, we isolated candidates for A, B, C, D and E function genes from Dendrobium crumenatum. These include AP2-, PI/GLO-, AP3/DEF-, AG- and SEP-like genes. The expression profiles of these genes exhibited different patterns from their Arabidopsis orthologs in floral patterning. Functional studies showed that DcOPI and DcOAG1 could replace the functions of PI and AG in Arabidopsis, respectively. By using chimeric repressor silencing technology, DcOAP3A was found to be another putative B function gene. Yeast two-hybrid analysis demonstrated that DcOAP3A/B and DcOPI could form heterodimers. These heterodimers could further interact with DcOSEP to form higher protein complexes, similar to their orthologs in eudicots. Our findings suggested that there is partial conservation in the B and C function genes between Arabidopsis and orchid. However, gene duplication might have led to the divergence in gene expression and regulation, possibly followed by functional divergence, resulting in the unique floral ontogeny in orchids.  相似文献   

12.
The process of floral organ abscission in Arabidopsis thaliana can be modulated by ethylene and involves numerous genes contributing to cell separation. One gene that is absolutely required for abscission is INFLORESCENCE DEFICIENT IN ABSCISSION, IDA, as the ida mutant is completely blocked in abscission. To elucidate the genetic pathways regulating floral abscission, molecular markers expressed in the floral abscission zone have been studied in an ida mutant background. Using plants with promoter-reporter gene constructs including promoters of a novel FLORAL ABSCISSION ASSOCIATED gene (FAA) encoding a putative single-stranded binding protein (BASIL), chitinase (CHIT::GUS) and cellulase (BAC::GUS), it is shown that IDA acts in the last steps of the abscission process. These markers, as well as HAESA, encoding a receptor-like kinase, were unaffected in their temporal expression patterns in ida compared with wild-type plants; thus showing that different regulatory pathways are active in the abscission process. In contrast to BASIL, CHIT::GUS and BAC::GUS showed, however, much weaker induction of expression in an ida background, consistent with a reduction in pathogen-associated responses and a lack of total dissolution of cell walls in the mutant. IDA, encoding a putative secreted peptide ligand, and HAESA appeared to have identical patterns of expression in floral abscission zones. Lastly, to address the role of ethylene, IDA::GUS expression in the wild type and the ethylene-insensitive mutant etr1-1 was compared. Similar temporal patterns, yet restricted spatial expression patterns were observed in etr1-1, suggesting that the pathways regulated by IDA and by ethylene act in parallel, but are, to some degree, interdependent.  相似文献   

13.
14.
Although great advances have been made in research on the regulation of primordium fate in the floral meristem, our understanding of the molecular events occurring during the floral transition remains incomplete. Via a careful analysis of the expression patterns of five genes encoding housekeeping functions during the floral transition in tomato (using both in situ hybridization and enzyme histochemistry), we identified a particular phase of floral development (sepal initiation) at which cells located toward the base of the meristem show a high level of cellular metabolism, whereas cells at the tip of the meristem dome show little activity. At other stages of floral development, the probes used showed genespecific patterns of expression generally consistent with our previous investigation of the vegetative apical meristem. Our data, in conjunction with other reports in the literature, enabled us to postulate that relative activation of basal cells of the meristem may be of general occurrence during the transition to flowering. Such a hypothesis could account for recent observations using periclinal chimeras on the effect of L3 genotypes on flower development and have a bearing on the expected mechanism by which the number of primordia generated by a floral meristem is regulated.  相似文献   

15.
16.
A central goal of evolutionary genetics is to trace the causal pathway between mutations at particular genes and adaptation at the phenotypic level. The proximate objective is to identify adaptations through the analysis of molecular sequence data from specific candidate genes or their regulatory elements. In this paper, we consider the molecular evolution of floral color in the morning glory genus (Ipomoea) as a model for relating molecular and phenotypic evolution. To begin, flower color variation usually conforms to simple Mendelian transmission, thus facilitating genetic and molecular analyses. Population genetic studies of flower color polymorphisms in the common morning glory (Ipomoea purpurea) have shown that some morphs are subject to complex patterns of selection. Striking differences in floral color and morphology are also associated with speciation in the genus Ipomoea. The molecular bases for these adaptive shifts can be dissected because the biosynthetic pathways that determine floral pigmentation are well understood and many of the genes of flavonoid biosynthesis have been isolated and extensively studied. We present a comparative analysis of the level of gene expression in Ipomoea for several key genes in flavonoid biosynthesis. Specifically we ask: how frequently are adaptive shifts in flower color phenotypes associated with changes in regulation of gene expression versus mutations in structural genes? The results of this study show that most species differences in this crucial phenotype are associated with changes in the regulation of gene expression.  相似文献   

17.
18.
19.
Hermaphrodite plants represent approximately 96% of the flowering species. Antirrhinum, Arabidopsis, Sinapsis or Pisum are model experimental systems in desciphering floral development. Classical and modern studies are reviewed, and a compilation of proposed models on flower pattern formation presented to suggest that such models, while explaining rather accurately the specification of floral organ fate (identity), are yet too simple to account for additional events involved in pattern establishment, cell type determination etc. or molecular patterns of expression of available cloned genes.  相似文献   

20.
Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Orchidaceae gave rise to AP3A and AP3B clades. Further duplication events resulted in four subclades, namely AP3A1, AP3A2, AP3B1 and AP3B2, during the evolution of Orchidaceae. The AP3 paralogous genes were expressed throughout inflorescence and floral bud development. From the in situ hybridization results, we noticed that the transition timings from ubiquitous to constrained expression in floral organs for both clades are different. The transition point of expression of the AP3A clade (clades 3 and 4) was at the late floral organ primordia stage. In contrast, that for the AP3B clade (clades 1 and 2) was not observed until the late inflorescence and floral bud stages. In addition, the AP3 orthologous genes revealed diverse expression patterns in various species of orchids, whereas the PI homologs were uniformly expressed in all floral whorls. AP3A2 orthologs play a noticeable role in lip formation because of their exclusive expression in the lip. Further evidence comes from the ectopic expression of AP3A2 detected in the lip-like petals extending from the lip in four sets of peloric mutants. Finally, a Homeotic Orchid Tepal (HOT) model is proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号