首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Folic acid is a vitamin that when used as a dietary supplementation can improve endothelial function. To assess the effect of folic acid on the development of atherosclerosis, male apolipoprotein E-deficient mice fed a standard chow diet received either water (control group) or an aqueous solution of folic acid that provided a dose of 75 microg/kg/day, for ten weeks. At the time of sacrifice, blood was drawn and the heart removed. The study measured plasma homocysteine, lipids, lipoproteins, low-density lipoprotein (LDL) oxidation, isoprostane, paraoxonase, and apolipoproteins, and aortic atherosclerotic areas. In folic acid-treated animals, total cholesterol, mainly carried in very low-density and low-density lipoproteins, increased significantly, and homocysteine, HDL cholesterol, paraoxonase, and triglyceride levels did not change significantly. Plasma isoprostane and apolipoprotein (apo) B levels decreased. The resistance of LDL to oxidization and plasma apoA-I and apoA-IV levels increased with a concomitant decrease in the area of atherosclerotic lesions. The administration of folic acid decreased atherosclerotic lesions independently of plasma homocysteine and cholesterol levels, but was associated with plasma levels of apolipoproteins A-I, A-IV and B, and decreased oxidative stress.  相似文献   

2.
The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the major parts of total neutral lipids (74-86%), apoB (65%), apoC-III (81%) and apoE (58%). In the presence of oleate, the VLDL, LDL, HDL, and VHDL accounted for 76%, 15%, 3%, and 6% of the total lipoproteins, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The growth-promoting activities of plasma lipoproteins (LDL, HDL, HDL1,2, HDL3) and total HDL apolipoproteins on a virus transformed lymphoblastoid cell line in vitro, has been compared. When maintained in lipoprotein-deficient serum-supplemented medium, these cells do not proliferate optimally. The addition of either HDL, HDL1,2 or HDL3 induced optimal cell proliferation as compared to the result observed in fetal calf serum-supplemented medium. The HDL1,2 subfraction was found to be more potent than the HDL3 subfraction in supporting cell growth. Total HDL apolipoproteins were able to support significant cell proliferation. In contrast, LDL did not promote cell growth. In serum-free conditions and in the presence of transferrin, only HDL and HDL subfractions induced cell proliferation. These results suggest that HDL and HDL subfractions could initiate B lymphoblastoid cell growth and that total HDL apolipoproteins could support a part of cell proliferation.  相似文献   

4.
The lipid transport system of 3-month-old male C57BL/6J obese (ob/ob) mice was investigated. Serum lipoproteins were separated by density gradient ultracentrifugation and characterized by their chemical and electrophoretic properties as well as their relative apolipoprotein contents, defined according to molecular weight and charge. Obese, ob/ob mice exhibited a marked hyperlipoproteinemia resulting from large increases in low-density lipoproteins (LDL, d 1.021-1.058 g/ml) and high-density lipoproteins (HDL, d 1.058-1.137 g/ml), particularly, the HDL2 subclass (d 1.058-1.109 g/ml). This increase in lipoproteins was entirely responsible for their hypercholesterolemia and hyperphospholipidemia. By contrast, these obese mice had a net decrease in very-low-density lipoproteins (VLDL, d less than 1.016 g/ml) and intermediate-density lipoproteins (IDL, d 1.016-1.021 g/ml), which accounted for their moderate hypotriglyceridemia. The chemical composition of heterogeneous light LDL (d 1.021-1.040 g/ml and dense LDL (d 1.040-1.058 g/ml) overlapped by HDL-like particles was highly modified. These modifications consisted of increases in the percentages of cholesteryl ester and phospholipid and decreases in that of triacylglycerol. There were also marked changes in the relative values of the apolipoproteins of VLDL, but principally, IDL and LDL. IDL and light LDL were poorer in apolipoproteins BH (Mr 340,000-320,000) and eventually in apolipoprotein BL (Mr 220,000-200,000) and enriched in apolipoproteins E (Mr 37,000-35,000) and C-A-II (Mr approximately equal to 12,000). A similar and very significant change occurred in VLDL for both the apolipoproteins BL and C-A-II. Dense LDL, mainly poorer in apolipoprotein BH and enriched in apolipoprotein A-I (Mr 28,000-27,000), closely resembled HDL2 in all the groups, and were enriched in apolipoproteins C-A-II in only the obese mice. We suggest that ob/ob mice are probably protected against atheromata because of the low VLDL and IDL levels, and the increase in HDL2.  相似文献   

5.
Prostacyclin (PGI2) production by bovine aortic or human umbilical vein endothelial cells increased when either human high density lipoproteins3 (HDL3) or low density lipoproteins (LDL) were added to a serum-free culture medium. At low concentrations and short incubation times, HDL3 produced more PGI2 than LDL, but LDL was just as effective as HDL3 in 18-hr incubations with high concentrations of lipoproteins. Neither lipoprotein was toxic to the cultures as assessed by [3H]leucine incorporation into cell protein. The stimulatory effect of HDL3 and LDL on PGI2 production decreased as growing cultures became confluent. Incubation with lipoproteins neither enhanced arachidonic acid release nor increased PGI2 formation when the cells were stimulated subsequently with ionophore A23187, indicating that the lipoproteins do not affect the intracellular processes involved in PGI2 production. The addition of albumin reduced the amount of PGI2 formation elicited by HDL3 or LDL. As compared with albumin-bound arachidonic acid, from 6- to 13-fold less PGI2 was produced during incubation with the lipoproteins. Furthermore, the amount of PGI2 formation elicited by the lipoproteins in 18 hr was 4-fold less than that produced during incubation with a fatty acid mixture containing only 5% arachidonic acid, and 3-fold less than when the cells were stimulated with the ionophore A23187 for 20 min. Taken together, our results indicate that human HDL and LDL contribute to endothelial PGI2 production only in a modest way and suggest that this process is not specific for either of these two plasma lipoproteins. In view of the greater participation of albumin-bound arachidonic acid in PGI2 production, plasma lipoproteins may not play as important a role in endothelial prostaglandin formation as has been suggested.  相似文献   

6.
Hyperlipidemia is a recognized risk factor for atherosclerotic vascular disease. The underlying mechanisms that link lipoproteins and vascular disease are undefined. Connective tissue growth factor (CTGF) is emerging as a key determinant of progressive fibrotic diseases, and its expression is upregulated by diabetes. To define the mechanisms through which low-density lipoproteins (LDL) promote vascular injury, we evaluated whether LDL can modulate the expression of CTGF and collagen IV in human aortic endothelial cells (HAECs). Treatment of HAECs with LDL (50 microg/ml) for 24 h produced a significant increase in the mRNA and the protein levels of CTGF and collagen IV compared with unstimulated controls. To explore the mechanisms by which LDL regulates CTGF and collagen IV expression in HAECs, we determined first if CTGF and collagen IV are downstream targets for regulation by transforming growth factor-beta (TGF-beta). The results demonstrated that TGF-beta produced a concentration-dependent increase in the protein levels of CTGF. To assess whether the induction of CTGF in response to LDL is mediated via autocrine activation of TGF-beta, HAECs were treated with LDL for 24 h in the presence and absence of anti-TGF-beta neutralizing antibodies (anti-TGF-beta NA). The results demonstrated that the increase in CTGF induced by LDL was significantly inhibited by the anti-TGF-beta NA. To investigate the upstream mediators of TGF-beta on activity of CTGF in response to LDL, HAECs were treated with LDL for 24 h in the presence and absence of cell-permeable MAPK inhibitors. Inhibition of p38(mapk) activities did not affect LDL-induced TGF-beta1, CTGF, and collagen IV expression. On the other hand, SP-600125, a specific inhibitor of c-Jun NH(2)-terminal kinase, suppressed LDL-induced TGF-beta, CTGF, and collagen IV expression, and PD-98059, a selective inhibitor of p44/42(mapk), suppressed LDL-induced TGF-beta and CTGF expression. These findings are the first to implicate the MAPK pathway and TGF-beta as key players in LDL signaling, leading to CTGF and collagen IV expression in HAECs. The data also point to a potential mechanistic pathway through which lipoproteins may promote vascular injury.  相似文献   

7.
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins.  相似文献   

8.
The endothelium is a key constituent of the vascular wall, being actively involved in maintaining the structural integrity and proper functioning of blood vessels. Hyperlipidemia, diabetes, hypertension, smoking and aging are important risk factors for the dysfunction of endothelial cells (EC). Circulating lipoproteins (Lp) synthesized and secreted from the intestine or liver have an important role in supplying peripheral tissues with fatty acids from triglyceride rich lipoproteins (TGRLp) for energy production or storage, and cholesterol from low density lipoproteins (LDL) or high density lipoproteins (HDL) for the synthesis of cellular membranes and steroid hormones. Under pathological conditions, Lp may suffer alterations in concentration and composition and become aggressors for EC. Modified LDL, remnant Lp, TGRLp lipolysis products, dysfunctional HDL are involved in the changes induced in EC morphology (reduced glycocalyx, overdeveloped endoplasmic reticulum, Golgi apparatus and basement membrane), loose intercellular junctions, increased oxidative and inflammatory stress, nitric oxide/redox imbalance, excess Lp transport and storage, as well as loss of anti-thrombotic properties, all of these being characteristics of endothelial dysfunction. Normal HDL are able to counteract the harmful effects of atherogenic Lp in EC but under persistent pathological conditions they lose the protective properties and become pro-atherogenic. This review summarises recent advances in understanding the role of Lp in the induction of endothelial dysfunction and the initiation and progression of atherosclerotic lesions. Its main focus is the antagonistic role of atherogenic Lp (LDL, VLDL, dysfunctional HDL) versus anti-atherogenic Lp (HDL), also pointing out the potential targets for arresting or reversing this process.  相似文献   

9.
10.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

11.
Oxidatively modified low density lipoproteins (LDL) have recently been proposed to play a role in atherogenesis by promoting foam cell formation and endothelial cell toxicity. The purpose of the present study was to determine whether modified LDL could also induce macrophage release of interleukin 1 beta (IL-1 beta), a cytokine which enhances vascular smooth muscle cell proliferation, another feature of the atherosclerotic process. LDL were oxidatively modified by incubation with either Cu2+ (Cu(2+)-LDL) or human peripheral blood monocyte-derived macrophages (M-LDL). Incubation of these modified LDL with macrophages (6 x 10(6) cells/culture) resulted in a dose-dependent induction of IL-1 beta release. At 300 micrograms protein/ml, Cu(2+)-LDL and M-LDL induced 422 and 333 pg of IL-1 beta/culture, respectively. Saponified Cu(2+)-LDL and M-LDL were shown to contain 9- and 13-hydroxyoctadecadienoic acid (HODE), lipid oxidation products of linoleate. When tested for activity in macrophage culture (3 x 10(6) cells/culture), it was found that 9-HODE and 13-HODE (final concentration 33 microM) induced the release of 122 and 43 pg of IL-1 beta/culture, respectively, whereas untreated cells released only 4 pg of IL-1 beta/culture. Incubation of macrophages with cholesteryl-9-HODE also induced IL-1 beta release; however, the degree of induction of IL-1 beta release by 9-HODE or its cholesteryl ester relative to modified LDL suggests that other components in oxidized LDL may also contribute to IL-1 beta induction. 9-HODE was rapidly taken up by macrophages, and the kinetics were similar to IL-1 beta release. A 1.5- to 6-fold increase in the level of IL-1 beta mRNA was detected as little as 3-h post-9-HODE treatment. The induction of IL-1 beta release from human monocyte-derived macrophages by 9-HODE and cholesteryl-9-HODE suggests a role for modified LDL, and its associated linoleate oxidation products, in vascular smooth muscle cell proliferation.  相似文献   

12.
Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H(2)O(2)/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophages and endothelial cells. The present study investigates the influence of hypochlorite-modified LDL on endothelial synthesis of nitric oxide (NO) measured as formation of citrulline (coproduct of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) upon cell stimulation with thrombin or ionomycin. Pretreatment of human umbilical vein endothelial cells with hypochlorite-modified LDL led to a time- and concentration-dependent inhibition of agonist-induced citrulline and cGMP synthesis compared with preincubation of cells with native LDL. This inhibition was neither due to a decreased expression of endothelial NO synthase (eNOS) nor to a deficiency of its cofactor tetrahydrobiopterin. Likewise, the uptake of l-arginine, the substrate of eNOS, into the cells was not affected. Hypochlorite-modified LDL caused remarkable changes of intracellular eNOS distribution including translocation from the plasma membrane and disintegration of the Golgi location without altering myristoylation or palmitoylation of the enzyme. In contrast, cyclodextrin known to deplete plasma membrane of cholesterol and to disrupt caveolae induced only a disappearance of eNOS from the plasma membrane that was not associated with decreased agonist-induced citrulline and cGMP formation. The present findings suggest that mislocalization of NOS accounts for the reduced NO formation in human umbilical vein endothelial cells treated with hypochlorite-modified LDL and point to an important role of Golgi-located NOS in these processes. We conclude that inhibition of NO synthesis by hypochlorite-modified LDL may be an important mechanism in the development of endothelial dysfunction and early pathogenesis of atherosclerosis.  相似文献   

13.
The purpose of this study was to test the use of human hepatocarcinoma HepG2 cells as a model for studying the formation and secretion of human hepatic lipoproteins. To this end, we determined the rate of accumulation and percent composition of neutral lipids and apolipoproteins in the culture medium of HepG2 cells and isolated and partially characterized the apolipoprotein B (ApoB) containing lipoprotein particles. The rates of accumulation in the medium of HepG2 cells, grown in minimum essential medium during a 24-h incubation, of triglycerides, cholesterol, and cholesterol esters expressed as microgram/(g of cell protein X h) were 373 +/- 55, 167 +/- 14, and 79 +/- 10, respectively; the secretion rates for apolipoproteins B, A-I, E, A-II, and C-III were 372 +/- 36, 149 +/- 14, 104 +/- 13, 48 +/- 4, and 13 +/- 1 microgram/(g of cell protein X h), respectively. The major portion of ApoB was present in very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) (84%), with the remainder occurring in high-density lipoproteins (HDL) (16%). Approximately 10-13% of ApoA-I and ApoA-II were present in VLDL and LDL, while 60% of ApoE occurred in HDL and 40% in VLDL and LDL. To separate ApoB-containing lipoproteins, secreted lipoproteins were fractionated by either sequential immunoprecipitation or immunoaffinity chromatography with antibodies to ApoB and ApoE. Results showed that 60-70% of ApoB occurred in the culture medium as lipoprotein B (LP-B) and 30-40% as lipoprotein B:E (LP-B:E). Both ApoB-containing lipoproteins represent polydisperse systems of spherical particles ranging in size from 100 to 350 A for LP-B and from 200 to 500 A for LP-B:E. LP-B particles were identified in VLDL, LDL, and HDL, while LP-B:E particles were only present in VLDL and LDL. The major neutral lipid of both ApoB-containing lipoproteins was triglyceride (50-70% of the total neutral lipid content); cholesterol and cholesterol esters were present in equal amounts. The LP-B:E particles contained 70-90% ApoB and 10-30% ApoE. The ApoB was identified in both types of particles as B-100. A time study on the accumulation of ApoB-containing lipoproteins showed that LP-B particles were secreted independently of LP-B:E particles.  相似文献   

14.
The growth-promoting activity of human high-density lipoproteins (HDL) and of their apolipoprotein components on bovine vascular endothelial cells in vitro has been compared. When maintained on plastic culture dishes and exposed to medium containing lipoprotein-deficient serum and fibroblast growth factor, these cells do not proliferate. Addition of either HDL or the total HDL apolipoproteins induces significant cell proliferation. Apolipoprotein CI, purified by chromatography on the ion-exchanger resin Polybuffer exchanger 94, has an effect on the cell growth similar to that of the total apolipoproteins of HDL.  相似文献   

15.
Rat liver endothelial cells in primary cultures take up and degrade 125I-labelled human very-low-density lipoproteins (VLDL) in a saturable fashion at physiological triacylglycerol concentrations. The iodinated VLDL are readily taken up by the freshly isolated endothelial cells and degradation products appear in the medium about 30 min after the addition of VLDL to the cultures. Uptake and degradation at 37 degrees C are effectively inhibited by unlabelled human VLDL, low-density lipoproteins (LDL), high-density lipoproteins and lymph chylomicrons, but only modestly by acetylated LDL. Purified apolipoproteins E and C-III:1 also compete with the uptake of iodinated VLDL, but when degradation was studied for longer periods of time, such a competition could not be demonstrated. This may be due to the fact that the added apolipoproteins become associated with the lipoproteins. In binding experiments at 7 degrees C, iodinated apolipoprotein C III:1 bound to the liver endothelial cells in a manner characteristic of receptor binding with a dissociation constant of 0.5 microM. This binding could not only be inhibited by unlabelled apolipoprotein C-III:1 but also by unlabelled apolipoprotein E. The results indicate that rat liver endothelial cells carry receptors for VLDL and that these recognize the apolipoproteins E, C-III and B on the lipoprotein surface. Considering the large endothelial surface and high blood flow through the liver, significant quantities of lipoproteins can be taken up and degraded, thus influencing the levels of circulating lipoproteins in the in vivo situation.  相似文献   

16.
17.
Glycation of plasma proteins may contribute to an excess risk of developing atherosclerosis in patients with diabetes mellitus. Although it is believed that high-density lipoprotein (HDL) is nonenzymatically glycosylated at an increased level in diabetic individuals, little is known about a possible linkage between glycated HDL and endothelium dysfunction in diabetes. This study set out to clarify whether glucose-modified HDL affects the function of endothelial cells by examining the apoptosis of cultured human aortic endothelial cells (HAECs) exposed to a glycated-oxidized HDL (gly-ox-HDL) prepared in vitro. Incubation of HAECs with 100 microg/ml of gly-ox-HDL for 48 h showed apoptotic features, such as cell shrinkage, membrane blebbing, and concentration and fragmentation of the nucleus, and the degree of apoptosis was dose-dependent on the glucose used in the preparation of gly-ox-HDL. Stimulation of HAECs with gly-ox-HDL elicited a marked increase in caspase 3 activity and the expressions of active caspase 3 and caspase 9, whereas concomitant treatment with a caspase 3 inhibitor significantly blocked gly-ox-HDL-induced apoptosis of HAECs. The release of cytochrome c into cytosols markedly increased in HAECs during the treatment with gly-ox-HDL. The increased expressions of Bax and Bad were detected in HAECs incubated for 24 h with gly-ox-HDL, but gly-ox-HDL failed to interfere with the expression of Bcl-2 and Bcl-x. Moreover, in vitro experiments with HDL (gly-HDL) glycated in the presence of 2 mM EDTA and Cu(2+)-oxidized HDL suggested that the apoptotic effect of gly-ox-HDL on endothelial cells might be due to an additional oxidative modification of gly-HDL. Taken altogether, additional oxidation of HDL under hyperglycemic conditions may induce endothelial apoptosis through a mitochondrial dysfunction, following the deterioration of vascular function.  相似文献   

18.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Addition of prostacyclin (PGI2) temporarily inhibits platelet aggregation and permits the isolation of platelets free from plasma proteins, which have the same sensitivity as those in plasma [Moncada, Radomski & Vargas (1982) Br. J. Pharmacol. 75, 165P]. By using a modification of this technique we have established that platelets isolated from normal subjects aggregate more readily in response to ADP and adrenaline when physiological concentrations of low-density lipoproteins (LDL) are present. At high LDL concentrations spontaneous aggregation occurs. High-density lipoproteins (HDL) and very-low-density lipoproteins (VLDL) had no effect on agonist-induced platelet aggregation at normal concentrations, but HDL sensitized at higher concentrations. These effects by lipoproteins are not accompanied by changes in platelet lipid content. Cyclohexanedione treatment of LDL to modify apolipoproteins appeared to abolish the sensitization effect, indicating that binding to receptors was essential for the effects of LDL. LDL, but not HDL, overcame the inhibitory effect of PGI2 on platelet aggregation, except at very high concentrations of PGI2. PGI2 raised the cyclic AMP content of isolated platelets, but LDL only partially prevented this rise. These results suggest that LDL may have a greater role in platelet aggregation than previously recognized and may also regulate effects of PGI2. These findings may be of relevance to an understanding of cardiovascular diseases.  相似文献   

20.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号