首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Evidence is presented that recA functions which promote the SOS functions of mutagenesis, LexA protein proteolysis, and lambda cI repressor proteolysis are each genetically separable from the others. This separation was observed in recombination-proficient recA mutants and rec+ (F' recA56) heterodiploids. recA430, recA433, and recA435 mutants and recA+ (F' recA56) heterodiploids were inducible for only one or two of the three functions and defective for mutagenesis. recA80 and recA432 mutants were constitutively activated for two of the three functions in that these mutants did not have to be induced to express the functions. We propose that binding of RecA protein to damaged DNA and subsequent interaction with small inducer molecules gives rise to conformational changes in RecA protein. These changes promote surface-surface interactions with other target proteins, such as cI and LexA proteins. By this model, the recA mutants are likely to have incorrect amino acids substituted as sites in the RecA protein structure which affect surface regions required for protein-protein interactions. The constitutively activated mutants could likewise insert altered amino acids at sites in RecA which are involved in the activation of RecA protein by binding small molecules or polynucleotides which metabolically regulate RecA protein.  相似文献   

3.
The dam-3 mutation caused a 2--4 fold increase in the susceptibility of E. coli K-12 uvrA to UV induction of prophage lambda, induced reactivation and mutagenesis of lambda, and mutation to histidine prototrophy. The increased inducibility exceeded the level expected by UV and dam-3 acting additively and independently, and suggests that the effects of UV and dam-3 interact in some way to potentiate induction of SOS functions.  相似文献   

4.
5.
Effects of vanillin on UV killing of umuC mutant strains of E. coli were investigated in order to analyze the antimutagenic role of vanillin in mutagenesis. UV-irradiated uvrA umuC cells showed higher survival when plated on medium containing vanillin rather than medium without vanillin. This increased survival associated with exposure to vanillin was observed more clearly in uvrA umuC lexA(Ind-) and uvrA umuC recF strains. However, the effect was inhibited by additional recB recC mutations and completely blocked by an additional recA mutation. As far as tested the increased survival of UV-treated cells by vanillin was dependent on a capacity for genetic recombination. The effect of vanillin on recombination frequency between 2 plasmid DNA, pATH4 (Cmr Tcs) and pBMX7 (Apr Tcs), in a uvrA umuC background was investigated. A significantly higher frequency of plasmid recombination was observed when vanillin was present in the culture medium. These findings suggest that the antimutagenic effect of vanillin is the result of enhancement of a recA-dependent, error-free, pathway of post-replication repair.  相似文献   

6.
7.
Simultaneous treatment of Escherichia coli cultures with methyl-nitrosoguanidine and mitomycin C induces recA-dependent inhibition of respiration but not inhibition of cell division. This pattern of SOS functions expression is the same as that is found following treatment with methyl-nitrosoguanidine alone and contrary to the pattern induced after mitomycin C addition. The same result is obtained when a culture of E. coli RecA441 (formerly tif) is shifted to 42 degrees C and treated simultaneously with methyl-nitrosoguanidine. The suppressor effect of this compound over the pattern of SOS functions expression induced by mitomycin C or high temperature in recA441 mutants is directly related to the increase in its dose. Moreover, the division temperature-sensitive mutant ftsA treated with methyl-nitrosoguanidine and high temperature does not show any decrease in its normal filamentous growth when cultured at 42 degrees C. This indicates that the effect of methyl-nitrosoguanidine on the recA-independent inhibition of cell division is not due to any indiscriminate effect of this compound over the division process. These results suggest that the specific kind of lesion caused in DNA is very important in determining which SOS function is induced.  相似文献   

8.
J B Sweasy  E M Witkin 《Biochimie》1991,73(4):437-448
E coli recA430 mutants are recombination-proficient, extremely UV sensitive, UV nonmutable and partially deficient in RecA-mediated proteolysis and in RecA-dependent 'induced replisome reactivation' (IRR), the ability to recover DNA replication activity after UV irradiation. To determine how this pleiotropic phenotype can be altered by mutation, we isolated 10 independent derivatives of a recA430 strain, selecting for increased UV resistance. Eight of the 10 owed their resistance to altered recA alleles. We here describe the phenotypes conferred by two of the new recA alleles (recA720 and recA727), each of which contains the original recA430 mutation (G662 to A) and a second-site transition: T167 to C in recA720, and G103 to A in recA727. The second-site change in recA720 suppresses all the defects caused by recA430, and causes RecA720 to exhibit greater activity than RecA+ in some respects. Some, but not all, of the recA430 defects are partially corrected by the second-site mutation in recA727.  相似文献   

9.
The tif-1 mutation in the Escherichia coli recA gene is known to cause induction of the various "SOS" functions at high temperature, including massive synthesis of the recA protein, lethal filamentation, elevated mutagenesis, and, in lambda lysogens, induction of prophage. It is shown here that the deoxyribonucleic acid initiation mutation dnaB252 suppresses all these manifestations of tif expression. Induction of lambda by ultraviolet irradiation, however, is not affected by the dnaB252 mutation. No similar suppression of tif is observed with other dnaB mutations affecting deoxyribonucleic acid elongation or with other deoxyribonucleic acid initiation mutations at the dnaA and dnaC loci. The fact that an alteration of the dnaB protein specifically suppresses tif-mediated SOS induction implies a role of the replication apparatus in this process, as has been suggested for ultraviolet induction. The induction of lambda is known to proceed via repressor cleavage, presumably promoted by an activated (protease) form of the recA protein. Since lambda induction is normal after ultraviolet irradiation of the tif-1 dnaB252(lambda) strain, tif-mediated induction in this strain may be blocked in a tif-specific step leading to activation of the recA (tif) protein. It is possible that the recA (tif) mutant protein may be directly involved in the replication complex in processes leading to this activation.  相似文献   

10.
The capability to synthesize recA protein has been tested for Escherichia coli treated with mitomycin C. recA protein was assayed using an immunoradiometric assay (Paoletti, C., Salles, B., and Giacomoni, P. U. (1982) Biochimie 64, 239-246). Mitomycin C-treated wild type E. coli can express recA gene in a similar quantitative fashion, independently of the growth media used in this work; glucose did not inhibit induction of recA protein in cells growing in synthetic media. Wild type E. coli recovering from energy starvation displays a similar qualitative capability to induce the synthesis of recA protein independently of the stage of growth at which the cells are treated with the drug. At midexponential phase, the cells appear to have an enhanced capability to synthesize recA protein. The relationship between survival and capability to synthesize recA protein was explored for E. coli lex, rec, and/or uvr mutants, after treatment with mitomycin C. A good correlation was found, except for a recB mutant and for an ethidium-sensitive strain, both able to produce as much recA protein as the wild type but 100-fold more sensitive to the drug. A similarly satisfactory correlation was found when plotting the survival after UV irradiation versus the capability of synthetizing recA protein with the exception of an uvrA strain and of a lexA strain.  相似文献   

11.
12.
Forward mutations induced by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) in the tetracycline resistance gene carried on plasmid pBR322 are shown to be dependent upon the induction of the host SOS functions in wild-type and umuC Escherichia coli cells. The mutation frequency in the umuC strain is equal to about 40% of the mutation frequency observed in the umu+ background. In the excision-repair-deficient uvrA mutant strain the mutagenic response is the same as in SOS-induced wild-type cells whether or not the uvrA bacteria are SOS-induced. Equal mutation frequencies are obtained in both the wild-type and the uvrA strains for equal modification levels although the survival of AAF-modified plasmid DNA is greatly reduced in the uvrA strain as compared to the wild-type strain. Sequence analysis of the mutations reveals that more than 90% of the N-Aco-AAF-induced mutations are frameshift mutations. Two types of mutational hotspots are observed occurring either at repetitive sequences or at non-repetitive sequences. Both types of mutants appear at similar locations and frequencies in both the wild-type and the uvrA strains. On the other hand, only the non-repetitive sequence mutants are obtained in the umuC background. These non-repetitive sequence mutants preferentially occur within the sequence 5' G-G-C-G-C-C 3' (the NarI restriction enzyme recognition sequence). The analysis of the -AAF binding spectrum to the same DNA fragment shows that there is no direct correlation between the modification spectrum and the mutation spectrum. We suggest that certain sequences are "mutation-prone" in the sense that only these sequences can be efficiently mutated as the result of an active processing mediated by specific proteins. When a sequence is said to be mutation-prone it probably corresponds to a particular structure that is induced within this sequence as a result of the binding to the DNA of the mutagen. This sequence-specific conformational change is the substrate for the protein(s) that fixes the mutation. The mutagenic processing pathway(s) is part of the cellular response to DNA-damaging agents (the so-called SOS response). Two pathways for frameshift mutagenesis are suggested by the data: an umuC-dependent pathway, which is involved in the mutagenic processing of lesions within repetitive sequences; an umuC-independent pathway responsible for the fixation of mutations within specific non-repetitive sequences.  相似文献   

13.
A combination of specific rifampicin-resistant (rpoB87) and nalidixic acid-resistant (gyrA87) mutations results in a marked increase in the survival of Escherichia coli against mitomycin C-induced lethality in mutants defective for SOS induction and excision repair. Although the response does not seem to be obligatorily dependent upon the RecA protein, the efficiency is markedly increased in its presence, even in a conventionally inactive form. This response is not elicited against lethality due to ultraviolet radiation or N-methyl-N' -nitro-N-nitrosoguanidine exposure. The combination of rpoB87 and gyrA87 mutations also greatly alleviates post-mitomycin C degradation of DNA under SOS non-inducible conditions. It is proposed that the rpoB subunit of RNA polymerase and gyrA subunit of DNA gyrase could participate in the repair of certain types of DNA damage, such as cross-links, in a mode independent of SOS-regulated excision repair and post-replication repair.  相似文献   

14.
ATP hydrolysis during SOS induction in Escherichia coli.   总被引:2,自引:1,他引:1  
Changes in cellular ATP concentration during SOS induction in strains of Escherichia coli with different levels of RecA and LexA proteins were studied. UV irradiation of RecA+ strains induced a twofold increase in the ATP concentration around the first 20 min, followed by a decrease to the values of nonirradiated cells. On the other hand, mutants defective in RecA protein or with either deficient RecA protease activity or cleavage-resistant LexA repressor did not show any decrease, suggesting that ATP consumption is related to LexA repressor hydrolysis. Furthermore, strains presenting a constitutive synthesis of RecA protein showed the same changes in ATP concentration as the wild-type strain. Likewise, the presence in a RecA+ strain of a LexA(Def) protein, which is defective in its capacity for binding specifically to SOS operators, did not disturb the changes in ATP when compared with the LexA+ RecA+ strain. Moreover, after UV irradiation, a LexA(Def) RecA- double mutant showed an important increase in ATP concentration, which remained elevated for at least 120 min after UV treatment.  相似文献   

15.
The tif-1 mutation in the recA gene of Escherichia coli caused, at 40 degrees C, lethal cell filamentation, induction of the recA protein, mutagenesis, and, in lambda lysogens, prophage induction. The presence of plasmid R100.1 in tif-1 strains suppressed tif-mediated cell filamentation and killing, recA protein induction, and prophage induction in lysogens. It also reduced mutagenesis in a tif-1 sfiA11(R100.1) strain. Plasmids F'lac, P1, and pMB9, in contrast, had little or no effect on tif-mediated induction of lambda. The presence of R100.1 did not inhibit the induction of the recA protein or of lambda by ultraviolet irradiation or mitomycin C treatment of tif-1(R100.1) or tif-1(lambda)(R100.1) strains.  相似文献   

16.
Excision-deficient Escherichia coli, carrying the gene for the photolyase on a multicopy plasmid, were irradiated with ultraviolet (UV) light then photoreactivated by illumination delivered from a camera flash unit. Such instantaneous illumination monomerizes only cyclobutane pyrimidine dimers already bound by the photolyase. Whereas the lethal effect of UV light and the number of C-to-T transition-type mutations induced by UV irradiation were both significantly reduced by subsequent irradiation with a single flash of light, single-flash photoreactivation did not reverse the induction of the recA gene by UV light. The results indicate, therefore, that non-photoreactivable DNA lesions play a role in recA induction.  相似文献   

17.
Resistance of tumors to drugs such as cisplatin and mitomycin C (MMC) is an important factor limiting their usefulness in cancer chemotherapy. The antitumor effects of these drugs are due to the formation of bifunctional adducts in DNA, with cisplatin causing predominantly intrastrand-crosslinks and MMC causing interstrand-crosslinks. The SOS chromotest was used to study the cellular mechanisms that process DNA damage in Escherichia coli exposed to cisplatin, ultraviolet irradiation (UV) and MMC and subsequently facilitate the production of a molecular signal for induction of the SOS response. Strains used in the SOS chromotest have a fusion of lacZ with the sfiA (sulA) gene so that the amount of SOS inducing signal, which is modulated by the ability of the cell to repair DNA, is measured by assaying beta-galactosidase activity. SOS induction in a strain proficient in homologous recombination (HR) was compared with that in isogenic strains deficient in HR due to a blocked RecBC pathway caused by a recB mutation or a blocked RecFOR pathway caused by a recO mutation. The effect of cisplatin treatment in a uvrA mutant strain blocked at the first step of NER was compared with that in an isogenic strain proficient in NER. Cellular resistance was measured as percent colony forming units (cfu) for cells treated with increasing doses of cisplatin, MMC and UV relative to that in untreated control cultures. The importance of both HR pathways for resistance to these treatments was demonstrated by decreased survival in mutants with the recB mutant being more sensitive than the recO mutant. SOS induction levels were elevated in the sensitive recB strain relative to the HR proficient strain possibly due to stalled and/or distorted replication forks at crosslinks in DNA. In contrast, induction of SOS was dependent on RecFOR activity that is thought to act at daughter strand gaps in newly synthesized DNA to mediate production of the signal for SOS induction. Proficiency in NER was necessary for both survival and high levels of SOS induction in cisplatin treated cells.  相似文献   

18.
19.
Bhattacharya R  Beck DJ 《DNA Repair》2002,1(11):955-966
Cisplatin is a potent anticancer agent forming intrastrand-crosslinks in DNA. The efficacy of cisplatin in chemotherapy can be limited by the development of tumor resistances such as elevated DNA repair or damage tolerance. In Escherichia coli, cisplatin treatment causes induction of the SOS regulon resulting in elevated levels of DNA Pol II, DNA Pol IV, DNA Pol V, the cell division inhibitor SfiA (SulA), homologous recombination (HR) and DNA repair. In this work, the roles of Pol II and HR in facilitating resistance of E. coli to cisplatin are studied. SOS induction levels were measured by beta-galactosidase assays in cisplatin-treated and untreated E. coli PQ30 that has the lacZ gene fused to the sfiA promoter. Comparative studies were carried out with derivatives of PQ30 constructed by P1 transduction that have transposon insertions in the polB gene, the recB gene blocking the RecBCD pathway of HR and genes of the RecFOR pathway of HR. Resistance of E. coli strains to cisplatin as determined by plating experiments decreased in the following order: parent PQ30 strain, polB > recO, recR, recF > recB. Both the RecBCD and RecFOR pathways of HR are important for survival when E. coli is exposed to cisplatin, because treatment of double mutants deficient in both pathways reduced colony forming ability to 37% in 6-9min in comparison to 39-120min for single mutants. Pol II and RecF appear to function in two distinct pathways to initiate replication blocked due to damage caused by cisplatin because function of Pol II was required for survival in mutants deficient in the RecFOR pathway after 2h of cisplatin treatment. In contrast, Pol II was not required for survival in recB mutants. SOS induction was delayed in RecFOR deficient mutants but occurred at high levels in the recB mutant soon after cisplatin treatment in a RecFOR-dependent way. An SfiA independent, DNA damage dependent pathway is apparently responsible for the filamentous cells observed after cisplatin or MMC treatments of these SfiA defective strains.  相似文献   

20.
Alkalinization of intracellular pH (pHi) causes an increase in UV resistance in wild-type and pH-sensitive mutant (DZ3) cells of Escherichia coli. Utilizing cells transformed with a plasmid (pA7) which bears the uvrA promoter fused to galK galactokinase structural gene, it was shown that alkaline pHi leads to an increase in the specific activity of galactokinase. This effect was not displayed in a mutant bearing a recA-insensitive lexA gene, nor in cells harboring a plasmid (pA8) in which the galK is fused to a lexA-insensitive uvrA promoter. Hence, the effects of pHi on cells functions may involve the lexA product of the SOS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号