首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Cassava (Manihot esculenta Crantz), is an important tropical tuber crop with global importance and plays a significant role in the food, nutritional and livelihood security of around 500 million people. In India, the low productivity of cassava attributes to the soil borne disease, particularly tuber rot caused by Phytophthora palmivora (Butl.) which is destructive and the attack is spreading in alarming rate in all the cassava growing regions causing heavy yield loss of more than 50%. Introduction of disease resistant varieties may alleviate the problem to a certain extent. This paper describes the screening procedures and findings on the disease resistant variety of cassava accession against tuber rot. Variety Sree Padmanabha imparted high resistance against tuber rot, while Sree Sahya was moderately resistant and all other accessions studied were found to be susceptible in in vitro and in field trials. In screening studies, a reproducible positive correlation was obtained between attached tubers in live plant with detached tubers which showed that detached tuber part can be used for the prediction of resistance in attached live plants of cassava for cultivar resistance. The procedure described here could be used as a simple, rapid and efficient method for screening of cassava accessions against tuber rot of cassava.  相似文献   

2.
Forty‐nine Phytophthora isolates were obtained from roots and crown of apricot trees with symptoms of decline grown in commercial orchards in Malatya, Elaz?? and Diyarbak?r provinces, Turkey, in 2011 and 2013. All of the recovered isolates were identified as Phytophthora palmivora on the basis of morphological characteristics. Blast analysis of ITS region sequences of rDNA of 5 isolates revealed 100% identity with a reference isolates of P. palmivora from GenBank. Isolates of P. palmivora were pathogenic on 12‐month‐old wild apricot rootstock ‘Zerdali’ plants that were wound inoculated on the roots and on the crown. This study demonstrated that P. palmivora is the cause of the crown and root rot found on apricot in Turkey. To our knowledge, this is the first report of P. palmivora on this host plant.  相似文献   

3.
Phytophthora sojae Kauf. and Gerd, a host specific pathogen to soybean, causes pre and postemergence damping-off and root and stem rot on soybean. The pathogen evokes severe yield losses in most soybean growing areas worldwide. The objective of this study was to determine phenotypic and genotypic diversity among single zoospore isolates (SZIs) originating from two single zoosporangia (Ps411-1 and Ps411-2) derived from the same parental isolate of P . sojae Ps411. Results showed that colony morphology and growth rate of 32 SZIs derived from sporangium Ps411-1 and 35 SZIs released from sporangium Ps411-2 did not significantly differ from the parental isolate Ps411. Pathogenicity of the SZIs was tested on three resistant and three susceptible Chinese soybean cultivars. While the majority of SZIs derived from sporangium Ps411-1(59.4%) and sporangium Ps411-2(71.4%) retained the same virulence spectrum as the parental isolate, the other SZIs of both progenies demonstrated either a higher or a lower level of virulence compared to that of parental isolate. A low level genetic variability in the populations of both single zoospore progenies was also demonstrated using the sequence-related amplified polymorphism (SRAP) technique. Cluster analysis separated the SZIs from both zoosporangia, Ps411-1 and Ps411-2, into four and three SRAP groups, respectively. No close correlation among SRAP and virulence could be established among SZIs. The results of this study suggest that virulence variability may be regarded as part of the total genetic changes among the zoospore progenies derived from single-zoosporangia. The pathogenic variability during asexual reproduction may play a role in changing the virulence structure of P . sojae .  相似文献   

4.
5.
Gahoonia  Tara S.  Nielsen  Niels E.  Lyshede  Ole B. 《Plant and Soil》1999,211(2):269-281
Low phosphorus (P) availability in soils and diminishing P reserves emphasize the need to create plants that are more efficient P users. Knowledge of P efficient germplasm among the existing cereal varieties may serve as the basis for improving soil P use by selection and breeding. We had identified some cereal cultivars (winter wheat: Kosack and Kraka; winter barley: Hamu and Angora; spring barley: Canut, Alexis, Salka, Zita;) which differed (p<0.05) in P depletion from thin slices (0.2 mm) of the rhizosphere soil under controlled conditions. In the present study, the same cultivars were studied under field conditions at three levels of P supply (no-P, 10 and 20 kg P ha-1) and the differences in P uptake as found in the previous work were confirmed. Under both conditions, the variation between the cultivars was greatest in soil without P fertilizers (no-P) for about 30 years. The variation in P uptake with most cultivars disappeared when 10 kg P ha-1 was applied. Root development did not differ between the cultivars much, but there was wide, consistent variation in their root hairs, regardless of growth media (solution, soil column and field). Increase in soil P level reduced the length of root hairs. The variation in root hairs between the cultivars was largest in no-P soil. When 10 kg P ha-1 was applied, the root hair lengths did not differ between the cultivars. Barley cultivars with longer root hairs depleted more P from the rhizosphere soil and also absorbed more P in the field. The relationship between root hairs and phosphorus uptake of the wheat cultivars was less clear. The wide variation in P uptake among the barley cultivars in the field and its relationship to the root hair development confirms that root hair length may be a suitable plant characteristic to use as criterion for selecting barley cultivars for P efficiency, especially in low-P soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号