首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On-line microdialysis coupled with microbore liquid chromatography was used to investigate the pharmacokinetics of chloramphenicol and its glucuronide in rat blood. A microdialysis probe was inserted into a jugular vein of male Sprague–Dawley rats. Chloramphenicol succinate (20 mg/kg, intravenously) was then administered via a femoral vein. Dialysates were automatically injected onto a LC system, via an on-line injector. Samples were eluted with a mobile phase containing acetonitrile-10 mM monochloroacetic acid (30:70, v/v, pH 3.0). The UV detector wavelength was set at 278 nm. The limit of quantitation for chloramphenicol was 10 ng/ml. The in vitro recoveries of chloramphenicol and chloramphenicol glucuronide at 500 ng/ml were 32.2±0.3% and 11.4±0.7%, respectively (n=6). Intra- and inter-assay accuracy and precision of the analyses were ≤10% in the range of 0.01 to 5.0 μg/ml.  相似文献   

2.
Simultaneous microdialysis probes in the blood and brain and sensitive high-performance liquid chromatography with fluorescence detection were used to examine the granisetron concentration in the jugular vein and frontal cortex of rats after drug administration. Two microdialysis probes were inserted into the right jugular vein and frontal cortex of male Sprague–Dawley rats to which granisetron (6 mg/kg, i.v.) had been administered. Dialysates were automatically collected using a microfraction collector. Samples were eluted with a mobile phase containing 25 mM acetate buffer (pH 4.8)–acetonitrile (72:28, v/v). Excitation and emission wavelengths were set at 305 and 360 nm, respectively, on a scanning fluorescence detector. The limit of quantification for granisetron was 0.5 ng/ml. The in vitro recovery of granisetron was 29.7±1.2% (n=6) for the jugular vein microdialysis probe and 6.1±0.5% (n=6) for the frontal cortex microdialysis probe. The increasing brain/blood concentration ratio of granisetron suggests that granisetron penetrates the blood–brain barrier.  相似文献   

3.
4.
A high-performance liquid chromatography method for the quantitative determination of telithromycin in biological fluids is described. The method is suitable for plasma and microdialysates from the interstitial space fluid of skeletal muscle and subcutaneous adipose tissue. Plasma samples were deproteinised with trichloroacetic acid and neutralised with sodium hydroxide. Microdialysates were analysed without further preparation step. Telithromycin was separated isocratically on a reverse-phase column using acetonitrile-0.03 M ammonium acetate, pH 5.2 (43:57, v/v) at a flow rate of 0.8 mlmin(-1), and fluorescence detection (excitation 263 nm, emission 460 nm). The calibration curve was linear from 0.01 to 5 microgml(-1). Within- and between-day imprecision and inaccuracy was < or =10%. The limits of quantification were 0.02 and 0.015 microgml(-1) for plasma and microdialysates, respectively. Since telithromycin is decomposed in aqueous solution at ambient temperature, it is strongly recommended to store samples frozen at -80 degrees C, to maintain the temperature at 4 degrees C during all preparation steps, and to analyse samples within 120 min after thawing.  相似文献   

5.
A column-switching high-performance liquid chromatographic assay is described for the determination of ceftazidime (a third-generation cephalosporin) in human serum. The method does not require prior sample pretreatment. Serum is directly injected in a first chromatographic column for sample clean-up and extraction. Thereafter, using an on-line column-switching system, the drug is quantitatively transferred and separated on a second, analytical column followed by determination using ultraviolet absorption at 258 nm. The technique allows direct, rapid, precise, and simple determination of ceftazidime in serum over the range of 1–250 μg/ml using 12.5 μl of serum. This method was applied to study the pharmacokinetics of the drug in patients undergoing vascular surgery.  相似文献   

6.
Rotigotine, an investigational dopamine agonist formulated as a patch, is being studied in Parkinson's disease. A microdialysis technique, in combination with microbore column liquid chromatography and electrochemical detection, was developed to monitor rotigotine levels in the brain. Microdialysis probes were inserted into the striata of anesthetized rats, and samples were collected during perfusion with Ringer's solution. Rotigotine was separated using a C18 reversed-phase column. The mobile phase consisted of 50mM Na(2)HPO(4) x 2H(2)O, 2.5 mM sodium octyl sulfonate, and pH 4.5; 35% volume to volume acetonitrile. The flow rate was 30 microl/min, and the potential of the glassy carbon electrode was set to +850 mV. The method allowed monitoring of the time course of brain extracellular rotigotine levels with a detection limit of 1 nM following either intravenous (0.5 mg/kg) or subcutaneous (5.0 mg/kg) rotigotine injection.  相似文献   

7.
A method based on a liquid-liquid extraction procedure followed by high-performance liquid chromatography (HPLC) coupled with UV-visible detection is described and validated for the determination of lauroyl-indapamide in rat whole blood. The blood sample was extracted with diethyl ether after the addition of 10% trifluoroacetic acid (aq.). The chromatographic separation was performed on a Chromasil ODS column, using methanol-acetonitrile-tetrahydrofuran-0.2% trifluoroacetic acid (170:20:15:38, v/v/v/v) as the mobile phase. The UV detection wavelength was set at 240 nm. The extraction recovery of lauroyl-indapamide was ranged from 76.5 to 82.6%, and the calibration curve had a good linearity in the range of 0.048-200 microg/ml (r = 0.9976). The method presents appropriate intra-day and inter-days repeatabilities, showing values below 7.4% in terms of the percentage of relative standard deviation (R.S.D.). The method proposed is simple, rapid and sensitive, being useful for pharmacokinetic studies in rats.  相似文献   

8.
A simple and reproducible high-performance liquid chromatography (HPLC) method was developed for determination of cyclosporine (CyA, also known as cyclosporin A) in human whole blood. The method entailed direct injection of the blood samples after deproteination using acetonitrile. Chromatography was carried out using an ODS column under isocratic elution with acetonitrile-5mM disodium hydrogen phosphate (75:25, v/v), pH 5.1 at 70 degrees C and a detector set at 210 nm. The mean absolute recovery of cyclosporine from blood was 97%, and the linearity was assessed in the range of 100-3000 ng/ml blood, with a correlation coefficient of greater than 0.999. The limit of quantification and detection of the present method were 100 and 50 ng/ml, respectively. This method has been used to analyze several hundred human blood samples for bioavailability studies.  相似文献   

9.
A method is described for the determination of the two enantiomers of mirtazapine in human blood plasma by high-performance liquid chromatography. Measurements were performed on drug free plasma spiked with mirtazapine and used to prepare and validate standard curves. Levels of enantiomers of mirtazapine were also measured in patients being treated for depression with racemic mirtazapine. Mirtazapine was separated from plasma by solid-phase extraction using CERTIFY columns. Chromatographic separation was achieved using a Chiralpak AD column and pre-column and compounds were detected by their absorption at 290 nm. Imipramine was used as an internal standard. The assay was validated for each analyte in the concentration range 10–100 ng/ml. The coefficient of variance was 16% and 5.5% for(+)-mirtazapine for 10 and 100 ng/ml control specimens respectively and 15% and 7.3% for mirtazapine for 10 and 100 ng/ml control specimens respectively. This assay is appropriate for use in the clinical range. The range of plasma mirtazapine concentrations from eleven patients taking daily doses of 30–45 mg of racemate was <5 to 69 ng/ml for (+)-mirtazapine and 13–88 ng/ml for (−)-mirtazapine for blood specimens collected 10–17.5 h after taking the dose.  相似文献   

10.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

11.
A simple, accurate and sensitive high-performance liquid chromatographic method was developed for the determination of propofol, an intravenous anaesthetic agent, in rat whole blood or plasma samples. The method is based on precipitation of the protein in the biological fluid sample and direct injection of the supernatant into an HPLC system involving a C18 reversed-phase column using a methanol-water (70:30) mobile phase delivered at 1 ml/min. Propofol and the internal standard (4-tert.-octylphenol) were quantified using a fluorescence detector set at 276 nm (excitation) and 310 nm (emission). The analyte and internal standard had retention times of 6.3 and 10.5 min, respectively. The limit of quantification for propofol was 50 ng/ml using 100 μl of whole blood or plasma sample. Calibration curves were linear (r2=0.99) over a 1–10 μg/ml concentration range and intra- and inter-day precision were between 4–11%. The assay was applied to the determination of propofol whole blood pharmacokinetics and propofol whole blood to plasma distribution ratios in rats.  相似文献   

12.
A method for the simultaneous determination of bile acids in rat liver tissue by high-performance liquid chromatography was developed. Without prior fractionation and alkaline hydrolysis, 30 unconjugated, glycine- and taurine-conjugated bile acids were detected by post-column enzymatic reaction and fluorescence detection. They were separated on a reversed-phase column using a linear gradient solvent system of 10 mM tribasic ammonium phosphate–acetonitrile–methanol (44:12:5, v/v/v) and 20 mM dibasic ammonium phosphate–acetonitrile–methanol (2:1:2, v/v/v). The limits of detection were 1–5 pmol, and calibration curves were linear for concentrations ranging between 10 and 4000 pmol per 10 μl injection. This rapid and reliable method is effective for measuring bile acid levels in liver tissue not only of rats but also of patients with hepatobiliary and other diseases.  相似文献   

13.
An HPLC method has been developed for the simultaneous determination of the toxic Aconitum alkaloids, aconitine, mesaconitine and hypaconitine in blood and urine samples. The samples were initially subjected to solid phase extraction using Oasis MCX cartridges, and the alkaloids were separated on an XTerra RP18 column, gradient-eluted with acetonitrile: ammonium hydrogen carbonate buffer. Calibration curves were linear in the range 2.75-550 ng for aconitine and hypaconitine, and 3-600 ng for mesaconitine: the limit of detection was 0.1 ng (signal-to-noise ratio of 3) for each alkaloid. The described analysis proved to be sensitive, rapid and economical, and will be applied in the identification and determination of these alkaloids in forensic and therapeutic drug monitoring.  相似文献   

14.
A quantitative analytical method for measuring unchanged cisplatin (CDDP) and high- and low-molecular-mass metabolites (fixed and mobile metabolites) in rat kidney and liver was developed. Unchanged CDDP, separated from fixed and mobile metabolites in tissue homogenates by consecutive procedures of fractionation and ultrafiltration, was determined by high-performance liquid chromatography (HPLC) with post-column derivatization. Although unchanged CDDP was found to be partly metabolized to fixed metabolites during the preparation of cytosolic ultrafiltrates, the recovery of unchanged CDDP gave a constant value (about 70%), which was independent of tissue type and CDDP concentration (from 1 to 10 μg/ml). The detection limit for unchanged CDDP in the cytosolic ultrafiltrate was 20 ng/ml, corresponding to a concentration detection limit of 65 ng Pt per g of tissue in the kidney and liver. The concentrations of fixed and mobile metabolites were determined as platinum concentrations in the tissue homogenate and in the cytosolic ultrafiltrate using atomic absorption spectrometry after correcting for transformation of unchanged CDDP to fixed metabolites. The distribution of unchanged CDDP, mobile metabolites and fixed metabolites in rat kidney and liver, after bolus injection of CDDP (5 mg/kg), was determined using this method.  相似文献   

15.
A simple method was developed for separation and quantification of riluzole in rat brain. The analyses were performed by high-performance liquid chromatography using a C18 reversed-phase column (Hypersil ODS) with UV detection at 264 nm. The mobile phase consisted of methanol-water containing 1% triethylamine adjusted with orthophosphoric acid to pH 3.2. The retention time was 8.6 min. A simple liquid-liquid extraction with ethyl acetate was used to obtain riluzole from brain samples. The limit of quantification was 10 ng/g. The recovery was about 80%. The relationship between peak areas and concentrations was linear over the range between 0.01 and 0.8 microg/g, with r2 value over 0.99. The assay provided good reproducibility and accuracy and proved to be suitable for pharmacokinetic studies of riluzole.  相似文献   

16.
17.
To evaluate the biodisposition of ceftazidime in rat blood, a rapid and simple microbore liquid chromatographic technique together with a microdialysis sampling technique were developed. This method involves an on-line design for blood dialysate directly injected into a microbore liquid chromatographic system. The chromatographic conditions consisted of a mobile phase of methanol–acetonitrile–100 mM monosodium phosphoric acid (pH 3.0) (10:10:80, v/v/v) pumped through a microbore reversed-phase column at a flow-rate of 0.05 ml/min. With the detection wavelength set at 254 nm, a good linear correlation was observed between the peak area and the ceftazidime concentration at 0.1 to 50 μg/ml (r=0.999). Microdialysis probes, being custom-made, were screened for acceptable in vivo recovery while chromatographic resolution and detection were validated for response linearity, as well as intra-day and inter-day variabilities. This method was then applied to the pharmacokinetic profiling of ceftazidime in blood following intravenous 50 mg/kg administration to rats. The pharmacokinetics was calculated from the corrected data for dialysate concentrations of ceftazidime versus time. This method has been used to study ceftazidime pharmacokinetics in rats and has proven to be rapid and reproducible.  相似文献   

18.
A specific and sensitive microbore liquid chromatographic method for the determination of unbound cefmetazole in rat blood was developed. A microdialysis probe was inserted into the jugular vein/right atrium of a Sprague–Dawley rat. Cefmetazole (10 mg/kg, i.v.) was then administered via the femoral vein. Dialysates were automatically injected into a liquid chromatographic system via an on-line injector. Isocratic elution of cefmetazole was achieved by LC–UV within 10 min. Intra- and inter-assay accuracy and precision of the assay were 10%. The detection limit of cefmetazole was 20 ng/ml. Pharmacokinetic analysis of results indicated that unbound cefmetazole levels in rats best fit a biexponential decay model.  相似文献   

19.
This paper describes a simple and sensitive high-performance liquid chromatographic (HPLC) method for the detection of human globin chains in blood and bloodstains. The method involves direct injection of the filtered samples of dilute hemolysates or bloodstain extracts onto a microbore C4 reversed-phase column (2.1 mm I.D.) with UV detection at 220 nm. Microbore HPLC offers a significant improvement in sensitivity with little loss of the resolution of globin chains and only small variations in the determination of γ chain composition. The detection limit of hemoglobin (Hb) was 0.1 μg, which is equivalent to about 1 nl of fresh whole blood. Umbilical cord blood could be differentiated from adult blood in stains that were up to twenty weeks old, by the presence of γ globin chains. The present method will be useful for detection of abnormal Hbs and for the determination of γ chain composition in clinical laboratories, as well as in the practice of forensic science for the analysis of minute amounts of blood and bloodstains.  相似文献   

20.
Nitric oxide (NO), formed from arginine by a specific neuronal NO synthase, is an important neurotransmitter in various regions of the central nervous system. While intracerebral microdialysis is an elegant technique to study local extracellular neurotransmitter concentrations in vivo, NO metabolites (nitrate, nitrite (NO(x))) are difficult to study at high temporal resolution because of low tissue concentrations and small sample volumes. We developed a sensitive fluorometric high-performance liquid chromatography (HPLC)-coupled NO(x) assay adapted for the use in brain microdialysate samples. The assay includes an initial enzymatic step in which nitrate is reduced to nitrite. Nitrite is acidified to N2O3, which reacts with 2,3-diaminonaphthalene to form 1-(H)-naphthotriazole. This reaction product can be readily isolated and quantitated by HPLC with fluorometric detection. The theoretical assay sensitivity is less than 1 nM, but numerous sources of contamination must be eliminated in the sampling and assaying process to reliably monitor brain NO(x) outflow by microdialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号